Synthesis of a Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte from Oxalate Precursor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new efficient method of synthesis of solid electrolyte with high lithium-ion conductivity with NASICON structure of Li1.3Al0.3Ti1.7(PO4)3 (LATP) composition is proposed. The advantage of the developed method is the use of liquid-phase precursor based on titanium oxalate complex. It was found that at 750°C a single phase well crystallized LATP is formed. The total ionic conductivity value of LATP after sintering at 900°C measured by impedance spectroscopy was 2.6 × 10−4 S/cm at room temperature and the activation energy of conductivity was 0.28 eV. The presented synthesis method is promising for scale-up and mass production.

Full Text

Restricted Access

About the authors

G. B. Kunshina

Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences

Author for correspondence.
Email: g.kunshina@ksc.ru
Russian Federation, 26a, Akademgorodok, Apatity, 184209

I. V. Bocharova

Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences

Email: g.kunshina@ksc.ru
Russian Federation, 26a, Akademgorodok, Apatity, 184209

References

  1. Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93 (6). С. RCR5126. https://doi.org/10.59761/RCR5126
  2. Yin J.-H., Zhu H., Yu S.-J. et al. // Adv. Eng. Mater. 2023. V. 25. P. 2300566. https://doi.org/10.1002/adem.202300566
  3. Stenina I., Novikova S., Voropaeva D. et al. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
  4. Jian Z., Hu Y.-S., Ji X. et al. // Adv. Mater. 2017. V. 29. P. 1601925. https://doi.org/10.1002/adma.201601925
  5. Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. T. 68. № 12. С. 1683. https://doi.org/10.31857/S0044457X23601360
  6. Lu X., Meng F., Huang S. et al. // Materials Letters. 2018. V. 230. P. 177. https://doi.org/10.1016/j.matlet.2018.07.103
  7. Wang S., Ben L., Li H. et al. // Solid State Ionics. 2014. V. 268. Part A. P. 110. https://doi.org/10.1016/j.ssi.2014.10.004
  8. Davis C. III, Nino J.C. // J. Am. Ceram. Soc. 2015. V. 98. P. 2422. https://doi.org/10.1111/jace.13638
  9. Wu P., Zhou W., Su X. et al. // Adv. Energy Mater. 2023. V. 13. P. 2203440. https://doi.org/10.1002/aenm.202203440
  10. Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
  11. Duluard S., Paillassa A., Puech L. et al. // J. Eur. Ceram. Soc. 2013. V. 33. P. 1145. https://doi.org/10.1016/j.jeurceramsoc.2012.08.005
  12. Schroeder M., Glatthaar S., Binder J.R. // Solid State Ionics. 2011. V. 201. P. 49. https://doi.org/10.1016/j.ssi.2011.08.014
  13. Kotobuki M., Koishi M. // J. Asian Ceram. Soc. 2020. V. 8(3). P. 891. https://doi.org/10.1080/21870764.2020.1793876
  14. Kotobuki M., Koishi M. // Ceram. Int. 2013. V. 39. № 4. P. 4645. https://doi.org/10.1016/j.ceramint.2012.10.206
  15. Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Неорган. материалы. 2013. Т. 49. С. 59. https://doi.org/10.7868/S0002337X13010053
  16. Bharathi P., Wang S.-F. // ACS Applied Nano Materials. 2024. V. 7 (2). P. 1615. https://doi.org/10.1021/acsanm.3c04581
  17. Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Журн. неорган. химии. 2014. Т. 59. С. 589. https://doi.org/10.7868/S0044457X14050122
  18. Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
  19. Yu S., Mertens A., Gao X. et al. // Funct. Mater. Lett. 2016. V. 9. P. 1650066. https://doi.org/10.1142/S1793604716500661
  20. Aono H., Sugimoto E., Sadaoka Y. et al. // J. Electrochem. Soc. 1990. V. 137. P. 1023. https://doi.org/10.1149/1.2086597
  21. Zaki A.A., Hashem H.M., Soltan S. et al. // Intern. J. Current Research. 2016. V. 8. P. 28385.
  22. Cretin M., Fabry P. // J. Eur. Ceram. Soc. 1999. V. 19. P. 2931.
  23. Куншина Г.Б., Бочарова И.В., Иваненко В.И. // Журн. прикл. химии. 2017. Т. 90. С. 312.
  24. Rossbach A., Neitzel-Grieshammer S. // Open Ceramics. 2022. V. 9. P. 100231. https://doi.org/10.1016/j.oceram.2022.100231
  25. Akhmetov N., Ovsyannikov N., Gvozdik N. et al. // J. Membrane Science. 2022. V. 643. P. 120002. https://doi.org/10.1016/j.memsci.2021.120002
  26. Yin J., Zhang H., Zeng Z. et al. // J. Alloys and Compd. 2024. V. 988. P. 174346. https://doi.org/10.1016/j.jallcom.2024.174346
  27. Bai F., Shang X., Nemori H. et al. // Solid State Ionics. 2019. V. 329. P. 40. https://doi.org/10.1016/j.ssi.2018.11.005
  28. Lu X., Wang R., Zhang F. et al. // Solid State Ionics. 2020. V. 354. P. 115417. https://doi.org/10.1016/j.ssi.2020.115417
  29. Dias J.A., Santagneli S.H., Messaddeq Y. // J. Phys. Chem. C. 2020. V. 124 (49). P. 26518. https://dx.doi.org/10.1021/acs.jpcc.0c07385
  30. Tolganbek N., Yerkinbekova Y., Khairullin A. et al. // Ceram. Int. 2021. V. 47. P. 18188. https://doi.org/10.1016/j.ceramint.2021.03.137
  31. Ren Y., Deng H., Zhao H. et al. // Ionics. 2020. V. 26. P. 6049. https://doi.org/10.1007/s11581-020-03781-5
  32. Han F., Westover A.S., Yue J. et al. // Nature Energy. 2019. V. 4. P. 187. https://doi.org/10.1038/s41560-018-0312-z
  33. Huang Y., Jiang Y., Zhou Y. et al. // Chem. Electro. Chem. 2019. V. 6. P. 6016. https://doi.org/10.1002/celc.201901687
  34. Tsai Y.C., Ku M.C., Hsieh C.T. et al. // J. Solid State Electro. Chem. 2024. V. 28. P. 2047. https://doi.org/10.1007/s10008-023-05729-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of thermal analysis of oxalate precursor LATP (a) and crystalline LATP (b).

Download (152KB)
3. Fig. 2. LATP diffractograms after annealing the oxalate precursor at temperatures of 300-750°C and after sintering in tablets between 850-1100°C. The asterisk indicates the impurity phase AlPO4.

Download (173KB)
4. Fig. 3. SEM images of monophasic LATP powder obtained from oxalate precursor at 750°C after grinding on a KM1 ball mill.

Download (254KB)
5. Fig. 4. IR spectrum of LATP after 300 (1), 750 (2) and 900°C (3).

Download (131KB)
6. Fig. 5. Electrochemical impedance spectra after LATP sintering at 900°C (1) and 1000°C (2) measured at room temperature.

Download (74KB)
7. Fig. 6. Temperature dependence of the ionic conductivity of LATP after sintering at 900°C.

Download (64KB)
8. Fig. 7. Chronoamperometric curve (a) and linear voltammetry curve (b) of LATP.

Download (112KB)

Copyright (c) 2025 Russian Academy of Sciences