Synthesis of a Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte from Oxalate Precursor
- Authors: Kunshina G.B.1, Bocharova I.V.1
-
Affiliations:
- Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences
- Issue: Vol 70, No 6 (2025)
- Pages: 776-783
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/686361
- DOI: https://doi.org/10.31857/S0044457X25060052
- EDN: https://elibrary.ru/IBJICR
- ID: 686361
Cite item
Abstract
A new efficient method of synthesis of solid electrolyte with high lithium-ion conductivity with NASICON structure of Li1.3Al0.3Ti1.7(PO4)3 (LATP) composition is proposed. The advantage of the developed method is the use of liquid-phase precursor based on titanium oxalate complex. It was found that at 750°C a single phase well crystallized LATP is formed. The total ionic conductivity value of LATP after sintering at 900°C measured by impedance spectroscopy was 2.6 × 10−4 S/cm at room temperature and the activation energy of conductivity was 0.28 eV. The presented synthesis method is promising for scale-up and mass production.
Keywords
Full Text

About the authors
G. B. Kunshina
Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences
Author for correspondence.
Email: g.kunshina@ksc.ru
Russian Federation, 26a, Akademgorodok, Apatity, 184209
I. V. Bocharova
Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences
Email: g.kunshina@ksc.ru
Russian Federation, 26a, Akademgorodok, Apatity, 184209
References
- Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93 (6). С. RCR5126. https://doi.org/10.59761/RCR5126
- Yin J.-H., Zhu H., Yu S.-J. et al. // Adv. Eng. Mater. 2023. V. 25. P. 2300566. https://doi.org/10.1002/adem.202300566
- Stenina I., Novikova S., Voropaeva D. et al. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
- Jian Z., Hu Y.-S., Ji X. et al. // Adv. Mater. 2017. V. 29. P. 1601925. https://doi.org/10.1002/adma.201601925
- Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. T. 68. № 12. С. 1683. https://doi.org/10.31857/S0044457X23601360
- Lu X., Meng F., Huang S. et al. // Materials Letters. 2018. V. 230. P. 177. https://doi.org/10.1016/j.matlet.2018.07.103
- Wang S., Ben L., Li H. et al. // Solid State Ionics. 2014. V. 268. Part A. P. 110. https://doi.org/10.1016/j.ssi.2014.10.004
- Davis C. III, Nino J.C. // J. Am. Ceram. Soc. 2015. V. 98. P. 2422. https://doi.org/10.1111/jace.13638
- Wu P., Zhou W., Su X. et al. // Adv. Energy Mater. 2023. V. 13. P. 2203440. https://doi.org/10.1002/aenm.202203440
- Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
- Duluard S., Paillassa A., Puech L. et al. // J. Eur. Ceram. Soc. 2013. V. 33. P. 1145. https://doi.org/10.1016/j.jeurceramsoc.2012.08.005
- Schroeder M., Glatthaar S., Binder J.R. // Solid State Ionics. 2011. V. 201. P. 49. https://doi.org/10.1016/j.ssi.2011.08.014
- Kotobuki M., Koishi M. // J. Asian Ceram. Soc. 2020. V. 8(3). P. 891. https://doi.org/10.1080/21870764.2020.1793876
- Kotobuki M., Koishi M. // Ceram. Int. 2013. V. 39. № 4. P. 4645. https://doi.org/10.1016/j.ceramint.2012.10.206
- Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Неорган. материалы. 2013. Т. 49. С. 59. https://doi.org/10.7868/S0002337X13010053
- Bharathi P., Wang S.-F. // ACS Applied Nano Materials. 2024. V. 7 (2). P. 1615. https://doi.org/10.1021/acsanm.3c04581
- Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Журн. неорган. химии. 2014. Т. 59. С. 589. https://doi.org/10.7868/S0044457X14050122
- Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
- Yu S., Mertens A., Gao X. et al. // Funct. Mater. Lett. 2016. V. 9. P. 1650066. https://doi.org/10.1142/S1793604716500661
- Aono H., Sugimoto E., Sadaoka Y. et al. // J. Electrochem. Soc. 1990. V. 137. P. 1023. https://doi.org/10.1149/1.2086597
- Zaki A.A., Hashem H.M., Soltan S. et al. // Intern. J. Current Research. 2016. V. 8. P. 28385.
- Cretin M., Fabry P. // J. Eur. Ceram. Soc. 1999. V. 19. P. 2931.
- Куншина Г.Б., Бочарова И.В., Иваненко В.И. // Журн. прикл. химии. 2017. Т. 90. С. 312.
- Rossbach A., Neitzel-Grieshammer S. // Open Ceramics. 2022. V. 9. P. 100231. https://doi.org/10.1016/j.oceram.2022.100231
- Akhmetov N., Ovsyannikov N., Gvozdik N. et al. // J. Membrane Science. 2022. V. 643. P. 120002. https://doi.org/10.1016/j.memsci.2021.120002
- Yin J., Zhang H., Zeng Z. et al. // J. Alloys and Compd. 2024. V. 988. P. 174346. https://doi.org/10.1016/j.jallcom.2024.174346
- Bai F., Shang X., Nemori H. et al. // Solid State Ionics. 2019. V. 329. P. 40. https://doi.org/10.1016/j.ssi.2018.11.005
- Lu X., Wang R., Zhang F. et al. // Solid State Ionics. 2020. V. 354. P. 115417. https://doi.org/10.1016/j.ssi.2020.115417
- Dias J.A., Santagneli S.H., Messaddeq Y. // J. Phys. Chem. C. 2020. V. 124 (49). P. 26518. https://dx.doi.org/10.1021/acs.jpcc.0c07385
- Tolganbek N., Yerkinbekova Y., Khairullin A. et al. // Ceram. Int. 2021. V. 47. P. 18188. https://doi.org/10.1016/j.ceramint.2021.03.137
- Ren Y., Deng H., Zhao H. et al. // Ionics. 2020. V. 26. P. 6049. https://doi.org/10.1007/s11581-020-03781-5
- Han F., Westover A.S., Yue J. et al. // Nature Energy. 2019. V. 4. P. 187. https://doi.org/10.1038/s41560-018-0312-z
- Huang Y., Jiang Y., Zhou Y. et al. // Chem. Electro. Chem. 2019. V. 6. P. 6016. https://doi.org/10.1002/celc.201901687
- Tsai Y.C., Ku M.C., Hsieh C.T. et al. // J. Solid State Electro. Chem. 2024. V. 28. P. 2047. https://doi.org/10.1007/s10008-023-05729-x
Supplementary files
