Bismuth(III) Salts with Malonic Acid: Synthesis, Structure and Properties
- Authors: Timakova E.V.1,2, Rybalova T.V.3, Mirzaeva I.V.4, Drebushchak T.N.1
-
Affiliations:
- Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State Technical University
- Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 70, No 6 (2025)
- Pages: 753-764
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/686358
- DOI: https://doi.org/10.31857/S0044457X25060036
- EDN: https://elibrary.ru/IBEWPX
- ID: 686358
Cite item
Abstract
The process of precipitation of bismuth(III) from perchloric acid solutions when malonic acid is added to them has been studied depending on the molar ratio of malonate ions to bismuth in the system. The basic bismuth malonate of the composition BiOH(C3H2O4) (compound I) and two identical in composition but different in structure bismuth malonates containing a water molecule were synthesized: Bi(C3H2O4)(C3H3O4)H2O (II) and [Bi(C3H2O4)(C3H3O4)] ∙ H2O (III). The basic bismuth malonate was obtained in X-ray amorphous form, and crystal structures were determined for the other two compounds by X-ray diffraction analysis. In compound II, a water molecule coordinates the bismuth and is a ligand, while in compound III it does not. Both compounds are one-dimensional (1D) coordination polymers. After calcination of compounds II and III at 120°C, anhydrous bismuth malonate of the composition Bi(C3H2O4)(C3H3O4) (IV) is formed by dehydration. All new compounds I–IV were characterized by IR spectroscopy, thermal analysis, powder diffractometry, and their compositions were confirmed by elemental analysis. The structure features of polymers II and III have been discussed, the topological analysis of the electron density of Bi–O contacts has been carried out, and the main and secondary bonds in coordination polyhedra have been identified.
Full Text

About the authors
E. V. Timakova
Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University
Author for correspondence.
Email: timakova@solid.nsc.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090; 20, K. Marx Ave., Novosibirsk, 630073
T. V. Rybalova
Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: timakova@solid.nsc.ru
Russian Federation, 9, Academic Lavrentiev Ave., Novosibirsk, 630090
I. V. Mirzaeva
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: timakova@solid.nsc.ru
Russian Federation, 3, Academic Lavrentiev Ave., Novosibirsk, 630090
T. N. Drebushchak
Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences
Email: timakova@solid.nsc.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090
References
- Keogan D., Griffith D. // Molecules. 2014. V. 19. P. 15258. https://doi.org/10.3390/molecules190915258
- Wang R., Li H., Ip T.K.-Y. et al. // Adv. Inorg. Chem. 2020. V. 75. P. 183. https://doi.org/10.1016/bs.adioch.2019.10.011
- Briand G.G., Burford N. // Chem. Rev. 1999. V. 99. P. 2601. https://doi.org/1021/cr980425s
- Zhou J.J., Shi X., Zheng S.P. et al. // Helicobacter. 2020. V. 25. P. 12755. https://doi.org/10.1111/hel.12755
- Тимакова Е.В., Бунькова Е.И., Афонина Л.И. и др. // Журн. прикл. химии. 2021. Т. 94. № 7. С. 857. https://doi.org/10.31857/S0044461821070069
- Усольцев А.Н., Шенцева И.А., Шаяпов В.Р. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1765. https://doi.org/10.31857/S0044457X2260102X
- Barszcz B., Masternak J., Kowalik M. // Coord. Chem. Rev. 2021. V. 443. 213935. https://doi.org/10.1016/j.ccr.2021.213935
- Ng S.W. // Acta Crystallogr., Sect. C: Struct. Chem. 2021. V. 77. P. 740. https://doi.org/10.1107/s2053229621011888
- Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б. и др. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1106. Serezhkin V.N., Artem'eva M.Yu., Serezhkina L.B. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1019.
- Сережкин В.Н., Медведков Я.А., Сережкина Л.Б. и др. // Журн. физ. химии. 2015. Т. 89. № 6. С. 978. https://doi.org/10.7868/S0044453715060254
- Сережкин В.Н., Рогалева Е.Ф., Шилова М.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 8. С. 1289. https://doi.org/10.7868/S0044453718080149
- Timakova E.V., Afonina L.I., Drebushchak T.N. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2023. V. 79. P. 409. https://doi.org/10.1107/s2053229623008124
- Kolitsch U. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003. V. 59. P. m501. https://doi.org/10.1107/s0108270103023618
- Tortet L., Monnereau O., Roussel P. et al. // J. Phys. IV (Proc.). 2004. V. 118. P. 43. https://doi.org/10.1051/jp4:2004118005
- Rivenet M., Roussel P., Abraham F. // J. Solid State Chem. 2008. V. 181. P. 2586. https://doi.org/10.1016/j.jssc.2008.06.031
- Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
- Shetu S.A., Sanchez-Palestino L.M., Rivera G. et al. // Tetrahedron. 2022. V. 129. P. 133117. https://doi.org/10.1016/j.tet.2022.133117
- Kim Y.-S. // BMB Rep. 2002. V. 35. P. 443. https://doi.org/10.5483/BMBRep.2002.35.5.443
- Власов Б.Я., Карелина Л.Н. // Бюл. ВСНЦ СО РАМН. 2011. № 1. С. 216.
- Небольсин В.Е. Пат. РФ № 2685277 C1 // Бюл. изобр. 2019. № 11.
- Sundvall B. // Acta Chem. Scand. 1980. V. 34A. P. 93. https://doi.org/10.3891/acta.chem.scand.34a-0093
- Sheldrick G.M. // SADABS Progr. scaling Correct. Area Detect. data 1996. https://www.scienceopen.com/document?vid=5cab3651-c60c-4e6d-89cc-c55396e9e2dc
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Crystallogr. 2020. V. 53. P. 226. https://doi.org/10.1107/S1600576719014092
- Weil M., Missen O.P., Mills S.J. // Acta Crystallogr., Sect. E: Crystallogr. Comm. 2023. V. 79. № 12. P. 1223. https://doi.org/10.1107/S205698902301023X
- BAND: SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com.
- Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. P. 1142. https://doi.org/10.1002/jcc.10255
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
- Van Lenthe E., Van Leeuwen R., Baerends E.J. et al. // Int. J. Quantum Chem. 1996. V. 57. P. 281. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
- Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
- Savin A., Jepsen O., Flad J. et al. // Angew. Chem. Int. Ed. 1992. V. 31. № 2. P. 187. https://doi.org/10.1002/anie.199201871
- Kowalik M., Masternak J., Brzeski J. et al. // Polyhedron. 2022. V. 219. 115818. https://doi.org/10.1016/j.poly.2022.115818
- Hartshorn R.M., Hey-Hawkins E., Kalio R. et al. // Pure Appl. Chem. 2007. V. 79. № 10. P. 1779. https://doi.org/10.1351/pac200779101779
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. Is. 3-4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
- Macoas E.M.S., Fausto R., Lundell J. et al. // J. Phys. Chem. A. 2000. V. 104. P. 11725. https://doi.org/10.1021/jp002853j
- Tarakeshwar P., Manogaran S. // J. Mol. Struct.: THEOCHEM. 1996. V. 362. P. 77. https://doi.org/10.1016/0166-1280(95)04375-6
- Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
- Ristova M., Petrusevski G., Raskovska A. et al. // J. Mol. Struct. 2009. V. 924–926. P. 93. https://doi.org/10.1016/j.molstruc.2008.12.010
- Mathew V., Jacob S., Xavier L. et al. // J. Rare Earths. 2012. V. 30. P. 245. https://doi.org/10.1016/s1002-0721(12)60039-8
- Brusau E.V., Narda G.E., Pedregosa J.C. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2002. V. 58. P. 1769. https://doi.org/10.1016/s1386-1425(01)00630-8
- Deacon G. // Coord. Chem. Rev. 1980. V. 33. P. 227. https://doi.org/10.1016/s0010-8545(00)80455-5
- Xiao J., Zhang H., Xia Y. et al. // RSC Adv. 2016. V. 6. P. 39861. https://doi.org/10.1039/c6ra03055f
- Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. New Jersey: John Wiley Sons, 2009. https://doi.org/10.1002/9780470405888
Supplementary files
