Bismuth(III) Salts with Malonic Acid: Synthesis, Structure and Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of precipitation of bismuth(III) from perchloric acid solutions when malonic acid is added to them has been studied depending on the molar ratio of malonate ions to bismuth in the system. The basic bismuth malonate of the composition BiOH(C3H2O4) (compound I) and two identical in composition but different in structure bismuth malonates containing a water molecule were synthesized: Bi(C3H2O4)(C3H3O4)H2O (II) and [Bi(C3H2O4)(C3H3O4)] ∙ H2O (III). The basic bismuth malonate was obtained in X-ray amorphous form, and crystal structures were determined for the other two compounds by X-ray diffraction analysis. In compound II, a water molecule coordinates the bismuth and is a ligand, while in compound III it does not. Both compounds are one-dimensional (1D) coordination polymers. After calcination of compounds II and III at 120°C, anhydrous bismuth malonate of the composition Bi(C3H2O4)(C3H3O4) (IV) is formed by dehydration. All new compounds I–IV were characterized by IR spectroscopy, thermal analysis, powder diffractometry, and their compositions were confirmed by elemental analysis. The structure features of polymers II and III have been discussed, the topological analysis of the electron density of Bi–O contacts has been carried out, and the main and secondary bonds in coordination polyhedra have been identified.

Full Text

Restricted Access

About the authors

E. V. Timakova

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Author for correspondence.
Email: timakova@solid.nsc.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090; 20, K. Marx Ave., Novosibirsk, 630073

T. V. Rybalova

Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: timakova@solid.nsc.ru
Russian Federation, 9, Academic Lavrentiev Ave., Novosibirsk, 630090

I. V. Mirzaeva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: timakova@solid.nsc.ru
Russian Federation, 3, Academic Lavrentiev Ave., Novosibirsk, 630090

T. N. Drebushchak

Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences

Email: timakova@solid.nsc.ru
Russian Federation, 18, Kutateladze St., Novosibirsk, 630090

References

  1. Keogan D., Griffith D. // Molecules. 2014. V. 19. P. 15258. https://doi.org/10.3390/molecules190915258
  2. Wang R., Li H., Ip T.K.-Y. et al. // Adv. Inorg. Chem. 2020. V. 75. P. 183. https://doi.org/10.1016/bs.adioch.2019.10.011
  3. Briand G.G., Burford N. // Chem. Rev. 1999. V. 99. P. 2601. https://doi.org/1021/cr980425s
  4. Zhou J.J., Shi X., Zheng S.P. et al. // Helicobacter. 2020. V. 25. P. 12755. https://doi.org/10.1111/hel.12755
  5. Тимакова Е.В., Бунькова Е.И., Афонина Л.И. и др. // Журн. прикл. химии. 2021. Т. 94. № 7. С. 857. https://doi.org/10.31857/S0044461821070069
  6. Усольцев А.Н., Шенцева И.А., Шаяпов В.Р. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1765. https://doi.org/10.31857/S0044457X2260102X
  7. Barszcz B., Masternak J., Kowalik M. // Coord. Chem. Rev. 2021. V. 443. 213935. https://doi.org/10.1016/j.ccr.2021.213935
  8. Ng S.W. // Acta Crystallogr., Sect. C: Struct. Chem. 2021. V. 77. P. 740. https://doi.org/10.1107/s2053229621011888
  9. Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б. и др. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1106. Serezhkin V.N., Artem'eva M.Yu., Serezhkina L.B. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1019.
  10. Сережкин В.Н., Медведков Я.А., Сережкина Л.Б. и др. // Журн. физ. химии. 2015. Т. 89. № 6. С. 978. https://doi.org/10.7868/S0044453715060254
  11. Сережкин В.Н., Рогалева Е.Ф., Шилова М.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 8. С. 1289. https://doi.org/10.7868/S0044453718080149
  12. Timakova E.V., Afonina L.I., Drebushchak T.N. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2023. V. 79. P. 409. https://doi.org/10.1107/s2053229623008124
  13. Kolitsch U. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003. V. 59. P. m501. https://doi.org/10.1107/s0108270103023618
  14. Tortet L., Monnereau O., Roussel P. et al. // J. Phys. IV (Proc.). 2004. V. 118. P. 43. https://doi.org/10.1051/jp4:2004118005
  15. Rivenet M., Roussel P., Abraham F. // J. Solid State Chem. 2008. V. 181. P. 2586. https://doi.org/10.1016/j.jssc.2008.06.031
  16. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
  17. Shetu S.A., Sanchez-Palestino L.M., Rivera G. et al. // Tetrahedron. 2022. V. 129. P. 133117. https://doi.org/10.1016/j.tet.2022.133117
  18. Kim Y.-S. // BMB Rep. 2002. V. 35. P. 443. https://doi.org/10.5483/BMBRep.2002.35.5.443
  19. Власов Б.Я., Карелина Л.Н. // Бюл. ВСНЦ СО РАМН. 2011. № 1. С. 216.
  20. Небольсин В.Е. Пат. РФ № 2685277 C1 // Бюл. изобр. 2019. № 11.
  21. Sundvall B. // Acta Chem. Scand. 1980. V. 34A. P. 93. https://doi.org/10.3891/acta.chem.scand.34a-0093
  22. Sheldrick G.M. // SADABS Progr. scaling Correct. Area Detect. data 1996. https://www.scienceopen.com/document?vid=5cab3651-c60c-4e6d-89cc-c55396e9e2dc
  23. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Crystallogr. 2020. V. 53. P. 226. https://doi.org/10.1107/S1600576719014092
  27. Weil M., Missen O.P., Mills S.J. // Acta Crystallogr., Sect. E: Crystallogr. Comm. 2023. V. 79. № 12. P. 1223. https://doi.org/10.1107/S205698902301023X
  28. BAND: SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com.
  29. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. P. 1142. https://doi.org/10.1002/jcc.10255
  30. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  31. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
  32. Van Lenthe E., Van Leeuwen R., Baerends E.J. et al. // Int. J. Quantum Chem. 1996. V. 57. P. 281. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
  33. Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
  34. Savin A., Jepsen O., Flad J. et al. // Angew. Chem. Int. Ed. 1992. V. 31. № 2. P. 187. https://doi.org/10.1002/anie.199201871
  35. Kowalik M., Masternak J., Brzeski J. et al. // Polyhedron. 2022. V. 219. 115818. https://doi.org/10.1016/j.poly.2022.115818
  36. Hartshorn R.M., Hey-Hawkins E., Kalio R. et al. // Pure Appl. Chem. 2007. V. 79. № 10. P. 1779. https://doi.org/10.1351/pac200779101779
  37. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. Is. 3-4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
  38. Macoas E.M.S., Fausto R., Lundell J. et al. // J. Phys. Chem. A. 2000. V. 104. P. 11725. https://doi.org/10.1021/jp002853j
  39. Tarakeshwar P., Manogaran S. // J. Mol. Struct.: THEOCHEM. 1996. V. 362. P. 77. https://doi.org/10.1016/0166-1280(95)04375-6
  40. Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
  41. Ristova M., Petrusevski G., Raskovska A. et al. // J. Mol. Struct. 2009. V. 924–926. P. 93. https://doi.org/10.1016/j.molstruc.2008.12.010
  42. Mathew V., Jacob S., Xavier L. et al. // J. Rare Earths. 2012. V. 30. P. 245. https://doi.org/10.1016/s1002-0721(12)60039-8
  43. Brusau E.V., Narda G.E., Pedregosa J.C. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2002. V. 58. P. 1769. https://doi.org/10.1016/s1386-1425(01)00630-8
  44. Deacon G. // Coord. Chem. Rev. 1980. V. 33. P. 227. https://doi.org/10.1016/s0010-8545(00)80455-5
  45. Xiao J., Zhang H., Xia Y. et al. // RSC Adv. 2016. V. 6. P. 39861. https://doi.org/10.1039/c6ra03055f
  46. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. New Jersey: John Wiley Sons, 2009. https://doi.org/10.1002/9780470405888

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (202KB)
3. Fig. 1. Diffractograms of bismuth malonates obtained by precipitation from chloric acid solutions at n = 1 (1), 5 (2), 10 (3), and of sample (2) aged at 120°C for 2 h (4).

Download (47KB)
4. Fig. 2. SEM images of bismuth malonates obtained from chloride acid solutions: a - compound I, b - compound II, c - compound III; n = 1 (a), 5 (b), 10 (c).

Download (326KB)
5. Fig. 3. Fragments of structures II (a) and III (b) with an independent part with thermal ellipsoids of 50% probability. Only atoms of the independent part and O atoms coordinating bismuth are numbered (see Table 1 for symmetry codes). H atoms are shown with arbitrary radius, hydrogen bonding is shown with blue dashed line.

Download (243KB)
6. Fig. 4. Fragments of structure II: a - chain of coordination polyhedra; b - neighbouring chains of polyhedra connected by hydrogen bonds (shown in blue dotted line), O atoms involved in the formation of hydrogen bonds are numbered (symmetry codes are not indicated).

Download (327KB)
7. Fig. 5. Fragments of structure III: a - chain of coordination polyhedra; b - neighbouring chains of polyhedra connected by hydrogen bonds (shown in blue dotted line), O atoms involved in the formation of hydrogen bonds are numbered (symmetry codes are not indicated).

Download (250KB)
8. Fig. 6. Structure II in the vicinity of the Bi atom (a) with atom numbering (see Table S5 for symmetry codes) and the distribution of the ELF function in the plane of Bi1-O5-O1 atoms with isosurface ELF = 0.42 (b), showing the sterically active electron pair on Bi (LP). The coordination polyhedron of Bi includes only atoms bound to Bi by major bonds. The dotted lines correspond to minor bonds.

Download (359KB)
9. Fig. 7. Structure III in the neighbourhood of the Bi atom (a) with atom numbering (see Table S5 for symmetry codes) and ELF function distribution in the plane of Bi1-O3-O1 atoms with isosurface ELF = 0.42 (b). The dotted lines correspond to the minor bonds.

Download (350KB)
10. Fig. 8. TG curves (1), DSC (2) and mass spectra for m / z = 18 (3), 44 (4) of compound II.

Download (116KB)
11. Fig. 9. TG curves (1), DSC (2) and mass spectra for m / z = 18 (3), 44 (4) of compound III.

Download (120KB)
12. Fig. 10. TG curves (1), DSC (2) and mass spectra for m / z = 18 (3), 44 (4) of compound IV.

Download (114KB)
13. Fig. 11. IR spectra of malonic acid (1) and bismuth malonates I (2), II (3), III (4) and IV (5).

Download (201KB)

Copyright (c) 2025 Russian Academy of Sciences