Hydride Phases Based on Ta0.33V0.67 Alloy with Partial Replacement of Its Components with Ti and Nb

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using of the X-ray diffraction, the reaction products of hydrogen with a volume-centered cubic modification of the alloy Ta0.33V0.67 with partial replacement of its components with titanium and niobium were studied. It was found that the hydrogenation reaction of such alloys results in the formation of hydride samples with varied phase composition and different lattice types. Varying the amount of titanium and niobium in the composition of the Ta0.33V0.67 alloy affects the transition of the crystal lattice from cubic body-centered to face-centered. Hydrogenation of the Ta0.33V0.67 alloy with partial replacement of the components with titanium and niobium leads to the formation of stable hydrides.

Texto integral

Acesso é fechado

Sobre autores

S. Lushnikov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: Lushnikov@hydride.chem.msu.ru
Rússia, 1, Leninskie Gory, Moscow, 119991

T. Filippova

Lomonosov Moscow State University

Email: Lushnikov@hydride.chem.msu.ru
Rússia, 1, Leninskie Gory, Moscow, 119991

S. Mitrokhin

Lomonosov Moscow State University

Email: Lushnikov@hydride.chem.msu.ru
Rússia, 1, Leninskie Gory, Moscow, 119991

Bibliografia

  1. Sato T., Saitoh H., Utsumi R. et al. // J. Phys. Chem. 2025. V. 169. P. 2865. https://doi.org/10.1021/acs.jpcc.4c06759
  2. Zhai Y.T., Li Y.M., Wei S.H. et al. // J. Energy Storage. 2025. V. 109. P. 115103. https://doi.org/10.1016/j.est.2024.115103
  3. Лушников С.А., Мовлаев Э.А., Бобриков И.А. и др. // Неорган. материалы. 2016. Т. 52. № 11. С. 1. http://doi.org/10.7868/S0002337X16110087
  4. Яртысь В.А. // Коорд. химия. 1992. Т. 18. № 4. С. 401.
  5. Schippnick P.F., Lawson A.C. // Acta Crystallogr. 1958. V. 11. P. 1643.
  6. Теслюк М.Ю. Металлические соединения со структурами фаз Лавеса. М.: Наука, 1969. С. 45.
  7. Lunch J.F., Lindsay R., Moyer R.O. // Solid State Commun. 1982. V. 41. № 1. P. 9.
  8. Падурец Л.Н., Доброхотова Ж.В. // Журн. неорган. химии. 1997. Т. 42. № 2. С. 184.
  9. Scripov A.V., Belyaev M.Yu., Stepanov A.P. // J. Alloys Compd. 1993. V. 190. P. 171. https://doi.org/10.1016/0925-8388(93)90395-4
  10. Shoemaker D.P., Shoemaker C.B. // J. Less-Comm. Met. 1979. V. 668. P. 43.
  11. Падурец Л.Н., Соколова Е.И., Доброхотова Ж.В. и др. // Журн. неорган. химии. 1995. Т. 40. № 4. С. 669.
  12. Yakel H.L.Jr. // Acta Crystallogr. 1958. V. 11. P. 46. https://doi.org/10.1007/S0365110X58000098
  13. Падурец Л.Н., Доброхотова Ж.В. и др. // Журн. неорган. химии. 2000. Т. 45. № 9. С. 1533.
  14. Figiel H., Przewoznik J., Paul-Boncour V. et al. // J. Alloys. Compd. 1998. V. . P. 29. https://doi.org/10.1016/S0925-8388(98)00566-0
  15. Scripov A.V., Rychcova S.V., Belyaev M.Yu. et al. // J. Phys.: Condens. Matter. 1990. V. 2. P. 7195. https://doi.org/10.1088/0953-8984/15/21/305
  16. Scripov A.V., Cook J.S., Karamonik C. et al. // J. Alloys Compd. 1997. V. 253–254. P. 432.
  17. Fisher P., Fauth F., Scripov A.V. et al. // J. Alloys Compd. 1997. V. 253–254. P. 282.
  18. Irodova A.V. // Solid State Phys. 1980. V. 2. № 9. P. 2559.
  19. Somenkov V.A., Irodova A.V. // J. Less-Common Met. 1984. V. 101. P. 481.
  20. Соменков В.А., Иродова А.В., Шильштейн С.Ш. // Физика металлов и металловедение. 1988. Т. 65. № 1. С. 132.
  21. Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1998. Т. 86. № 3. С. 114.
  22. Somenkov V.A. // Ber. Bunsen-Ges. Phys. Chem. 1972. V. 76. P. 724. https://doi.org/10.1524/zpch.1979.117.117.125
  23. Мирон Н.Ф., Щербак В.И., Быков В.Н. и др. // Кристаллография. 1973. Т. 18. С. 845.
  24. Gibb T.R.P. // J. Phys. Chem. 1964. V. 68. P. 1096.
  25. Langeberg J.C., McLellan R.B. // Acta Metall. 1973. V. 21. P. 897.
  26. Hulink J.C. // Delf. Prog. Rep. 1975. V. A1. P. 115.
  27. Westlake D.G., Mueller M.H., Knott H.W. // J. Appl. Crystallogr. 1973. V. 6. P. 206.
  28. Muller H., Weymann K., Hartwig P. // J. Less-Comm. Met. 1980. V. 74. P. 17. https://doi.org/10.1016/0022-5088(80)90068-5
  29. Schober T., Pick M.A., Wenzl H. // J. Phys. Status Solidi. A. 1973. V. 18. P. 175. https://doi.org/10.1002/pssa.2210180114
  30. Muller H., Weymann K. // J. Less-Comm. Met. 1986. V. 119. P. 115. https://doi.org/10.101016/0022-5088(86)90201-8
  31. Dewey R.S., Van Tamelen E.E. // J. Am. Chem. Soc. 1961. V. 83. P. 3728.
  32. Nowak B., Hayashi S., Hayamizu K. // J. Less-Comm. Met. 1986. V. 123. P. 75
  33. Richter K.H., Weis A. // Ber. Bunsen-Ges. 1988. V. 92. P. 833.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of samples of alloys with OCC lattice: a - Ti0.17Ta0.16V0.67, b - Ti0.21Ta0.12V0.67, c - Ta0.33V0.40Ti0.27, d - Ta0.33V0.55Nb0.12, e - Ta0.33V0.47Nb0.20, f - Nb0.10Ta0.23V0.67, processed by the Rietveld method. The experimental (dots) and calculated (upper line) profiles and the difference between them (lower line) are shown. The dashes correspond to Bragg positions.

Baixar (549KB)
3. Fig. 2. X-ray diffraction patterns of samples of hydride phases based on alloys with OCC lattice: a - Ti0.17Ta0.16V0.67 (1.4 N/M), b - Ti0.21Ta0.12V0.67 (1.8 N/M), c - Ta0.33V0.40Ti0.27 (1.6 N/M), d - Ta0.33V0.55Nb0.12 (0.8 N/M), e - Ta0.33V0.47Nb0.20 (0.5 N/M), f - Nb0.10Ta0.23V0.67 (0.5 N/M) treated by the Rietveld method. Experimental (dots) and calculated (upper line) profiles and the difference between them (lower line) are shown. The dashes correspond to Bragg positions. The asterisk marks the indices of the hydride phase with HCC lattice.

Baixar (688KB)
4. Fig. 3. Interatomic distances (a, c) and lattice parameters (b, d) in synthesised hydride phases. a, b - samples with titanium; b, d - samples with niobium.

Baixar (362KB)
5. Fig. 4. Transformation of the crystalline OCC lattice of the studied alloys as a result of the hydrogenation reaction. Structures of hydrides with OCC lattice (a), rhombic lattice (b) and HCC lattice (c). The tetrahedral positions 12d in the OCC lattice, 2a and 2b in the rhombic lattice and position 8c in the HCC lattice, which are occupied by hydrogen atoms, have been identified. The position parameters of hydrogen are borrowed from the literature [27, 28, 31].

Baixar (159KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025