Features of the synthesis of magnesium praseodymium hexaaluminate PrMgAl11O19 with a magnetoplumbite structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

RE magnesium hexaaluminates with magnetoplumbite structure are considered as potential candidates for thermal barrier coatings. However, the synthesis of single-phase samples is associated with certain difficulties. In this work, the features of PrMgAl11O19 preparation by reverse precipitation and citrate sol-gel synthesis are compared. Based on the results of thermal analysis of precursors, stepwise annealing of the samples was carried out, followed by X-ray phase analysis of the product. It is shown that the optimal condition for producing single-phase hexaaluminate PrMgAl11O19 is long-term annealing of tableted precursors obtained by the sol-gel method at a temperature of 1600°C. Thermodynamic assessment of possible reactions of praseodymium magnesium hexaaluminate formation from oxides confirmed the decomposition of PrMgAl11O19 at temperatures above 1700°C.

Texto integral

Acesso é fechado

Sobre autores

М. Ryumin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of RAS

Autor responsável pela correspondência
Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

O. Kondrat’eva

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

K. Gavrcihev

Kurnakov Institute of General and Inorganic Chemistry of RAS

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Padture N.P., Gell M., Jordan E.H. // Science. 2002. V. 296. № 5566. P. 280. https://doi.org/10.1126/science.1068609
  2. Xueqiang C.A.O. // J. Mater. Sci. Technol. 2007. V. 23. № 1. P. 15. https://www.jmst.org/EN/Y2007/V23/I01/15
  3. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. № 6. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
  4. Gleeson B. // J. Propulsion Power. 2006 V. 22. № 23. P. 75. https://doi.org/10.2514/1.20734
  5. Seraffon M., Simms N.J., Sumner J. et al. // Surf. Coat. Technol. 2011. V. 206. № 7. P. 1529. https://doi.org/10.1016/j.surfcoat.2011.06.023
  6. Vassen R., Cao X., Tietz F. et al. // J. Am. Ceram. Soc. 2000. V. 83. № 8. P. 2023. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  7. Drexler J.M., Gledhill A.D., Shinoda K. et al. // Adv. Mater. 2011. V. 23. № 21. P. 2419. https://doi.org/10.1002/adma.201004783
  8. Ma W., Mack D.E., Vaßen R. et al. // J. Am. Ceram. Soc. 2008. V. 91. № 8. P. 2630. https://doi.org/10.1111/j.1551-2916.2008.02472.x
  9. Bansal N.P., Zhu D.M. // Surf. Coat. Technol. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  10. Choi S.R., Bansal N.P., Zhu D.M. // Ceram. Eng. Sci. Proc. 2005. V. 26. P. 11. https://doi.org/10.1002/9780470291238.ch2
  11. Haoran L., Chang-An W., Chenguang Zh. et al. // J. Eur. Ceram. Soc. 2015. V. 35. № 4. P. 1297. https://doi.org/10.1016/j.jeurceramsoc.2014.10.030
  12. Li X., Deng Z., Zhao H. et al. // Surf. Coat. Technol. 2022. V. 440. P. 128490. https://doi.org/10.1016/j.surfcoat.2022.128490
  13. Wang Y.H., Ouyang J.H., Liu Z.G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  14. Chen X., Sun Y., Hu J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
  15. Min X., Fang M., Huang Z. et al. // Mater. Lett. 2014. V. 125. P. 140. https://doi.org/10.1016/j.matlet.2014.03.171
  16. Min X., Fang M., Huang Z. et al. // J. Am. Ceram. Soc. 2015. V. 98. № 3. P. 788. https://doi.org/10.1111/jace.13346
  17. Tian M., Wang X.D., Zhang T. // Catal. Sci. Technol. 2016. V. 6. № 7. P. 1984. https://doi.org/10.1039/C5CY02077H
  18. Sun J., Wang J., Hui Y. et al. // Ceram. Int. 2020. V. 46. № 4. P. 4174. https://doi.org/10.1016/j.ceramint.2019.10.135
  19. Wang Y.H., Ouyang J.H., Liu Z.G. // Mater. Design. 2010. V. 31. № 7. P. 3353. https://doi.org/10.1016/j.matdes.2010.01.058
  20. Wang C.A., Lu H., Huang Z. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 3. P. 1095. https://doi.org/10.1111/jace.15285
  21. Bhattacharya I.N., Das S.C., Mukherjee P.S. et al. // Scand. J. Metall. 2004. V. 33. № 4. P. 211. https://doi.org/10.1111/j.1600-0692.2004.00686.x
  22. Sokovnin S.Y., Il’ves V.G. // Nanotechnologies Russ. 2013. V. 8. № 3. P. 220. https://doi.org/10.1134/S1995078013020171
  23. Gagarin P.G., Guskov A.V., Guskov V.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. https://doi.org/10.31857/S0044457X23601062 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.]
  24. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. № 11. P. 6864. https://doi.org/10.1063/1.328680
  25. Ma Z., Zheng S., Chen Y. et al. // Phys. Rev. B. 2024. V. 109. № 16. P. 165143. https://doi.org/10.1103/physrevb.109.165143
  26. Cao Y., Bu H., Fu Z. et al. // Mater. Futures. 2024. V. 3. № 3. P. 035201. https://doi.org/10.1088/2752-5724/ad4a93
  27. Zhu R.X., Liu Z.G., Ouyang J.H. et al. // Ceram. Int. 2013. V. 39. № 8. P. 8841. https://doi.org/10.1016/j.ceramint.2013.04.073
  28. Robie R.A., Hemingway B.S., Fisher J.R. // US Geol. Surv. Bull. 1978. № 1452. P. 364. https://doi.org/10.1021/cm201964r
  29. Gruber J.B., Justice B.H., Westrum Jr E.F. et al. // J. Chem. Thermodyn. 2002. V. 34. № 4. P. 457. https://doi.org/10.1006/jcht.2001.0860
  30. Zhang Y., Navrotsky A. // J. Non-Cryst. Solids. 2004. V. 341. P. 141. https://doi.org/10.1016/j.jnoncrysol.2004.04.027.
  31. Tachibana M., Fritsch K., Gaulin B.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 89. № 17. P. 174106. https://doi.org/10.1103/PhysRevB.89.174106.
  32. Glasser L. // Chem. Thermodyn. Therm. Anal. 2022. V. 7. P. 100069. https://doi.org/10.1016/j.ctta.2022.100069
  33. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2024. Т. 69. № 10. P. 1532. https://10.1134/S0036023624602186 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 10. С. 1424. https://doi.org/10.31857/S0044457X24100081 ]

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Temperature dependences of heat flux and mass change of PrMgAl11O19 precursor obtained by the deposition method.

Baixar (39KB)
3. Fig. 2. Diffractograms of PrMgAl11O19 precursor obtained by deposition method and annealed at 600 (1), 1000 (2), 1300 (3), 1400 (4), 1500 (5), 1600 (6) and 1700°C (7). P is PrAlO3 (perovskite), S is MgAl2O4 (spinel), C is a-Al2O3 (corundum), O is Pr6O11, and γ is γ-Al2O3. Unlabeled peaks refer to the PrMgAl11O19 phase with magnetoplumbite structure.

Baixar (67KB)
4. Fig. 3. Results of thermal and thermogravimetric analysis of PrMgAl11O19 precursor obtained by sol-gel method.

Baixar (32KB)
5. Fig. 4. Diffractograms of PrMgAl11O19 precursor prepared by sol-gel method and annealed at 1000 (1), 1500 (2), 1600 (3) and 1700°C (4). P is PrAlO3 (perovskite) and S is MgAl2O4 (spinel). Unlabeled peaks refer to the PrMgAl11O19 phase with magnetoplumbite structure.

Baixar (44KB)
6. Fig. 5. Diffractogram of PrMgAl11O19.

Baixar (60KB)
7. Fig. 6. Microphotograph of magnesium praseodymium hexaaluminate prepared by sol-gel synthesis method and annealed at 1600°C.

Baixar (197KB)
8. Fig. 7. Temperature dependences of the Gibbs energy of the reactions of PrMgAl11O19 formation. 1-4 - numbers of reactions (see in the text).

Baixar (23KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025