Preparation and Chemosensory Properties of Ti2CTx–10 mol. % SnO2 Composite Material

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A hybrid method for the preparation of Ti2CTx10 mol. % SnO2 composite material was developed, combining a deposition method in the presence of dispersed MXene accordion-like aggregates and subsequent hydrothermal treatment. As a result, the MXene multilayer was decorated by ~24 nm tin dioxide nanoparticles, and the interlayer spacing of the Ti2CTx MXene multilayer increased from 11.6 to 13.5 Å. For the obtained Ti2CTx–SnO2 composite material coated by microplotting, a high sensitivity of the receptor layer to 100 ppm ethanol, ammonia and nitrogen dioxide was observed already at room temperature and under conditions of 23% relative humidity. The determined high response of the nanocomposite to humidity changes allows us to consider it as a promising receptor material for a humidity sensor.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

A. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

I. Nagornov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

S. Dmitrieva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian Chemical and Technological University

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991; Moscow, 125047

Т. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Hooshmand S., Kassanos P., Keshavarz M. et al. // Sensors. 2023. V. 23. № 20. P. 8648. https://doi.org/10.3390/s23208648
  2. Berwal P., Sihag S., Rani S. et al. // Ind. Eng. Chem. Res. 2023. V. 62. № 37. P. 14835. https://doi.org/10.1021/acs.iecr.3c02288
  3. Khorramifar A., Karami H., Lvova L. et al. // Sensors. 2023. V. 23. № 12. P. 5716. https://doi.org/10.3390/s23125716
  4. Prasad P., Raut P., Goel S. et al. // Environ. Monit. Assess. 2022. V. 194. № 12. P. 855. https://doi.org/10.1007/s10661-022-10479-w
  5. Nazemi H., Joseph A., Park J. et al. // Sensors. 2019. V. 19. № 6. P. 1285. https://doi.org/10.3390/s19061285
  6. Fine G.F., Cavanagh L.M., Afonja A. et al. // Sensors. 2010. V. 10. № 6. P. 5469. https://doi.org/10.3390/s100605469
  7. De Vito S., Piga M., Martinotto L. et al. // Sens. Actuators, B: Chem. 2009. V. 143. № 1. P. 182. https://doi.org/10.1016/j.snb.2009.08.041
  8. Raju P., Li Q. // J. Electrochem. Soc. 2022. V. 169. № 5. P. 057518. https://doi.org/10.1149/1945-7111/ac6e0a
  9. Chai H., Zheng Z., Liu K. et al. // IEEE Sens. J. 2022. V. 22. № 6. P. 5470. https://doi.org/10.1109/JSEN.2022.3148264
  10. Yadav M., Kumar M., Chaudhary S. et al. // Ind. Eng. Chem. Res. 2023. V. 62. № 29. P. 11259. https://doi.org/10.1021/acs.iecr.3c00242
  11. Yang B., Myung N.V., Tran T. // Adv. Electron. Mater. 2021. V. 7. № 9. P. 2100271. https://doi.org/10.1002/aelm.202100271
  12. Castañeda L., Gonzalez-Alatriste M., Avendaño-Alejo M. // Sens. Lett. 2016. V. 14. № 4. P. 331. https://doi.org/10.1166/sl.2016.3631
  13. Dadkhah M., Tulliani J.-M. // Sensors. 2022. V. 22. № 13. P. 4669. https://doi.org/10.3390/s22134669
  14. Marikutsa A., Rumyantseva M., Konstantinova E.A. et al. // Sensors. 2021. V. 21. № 7. P. 2554. https://doi.org/10.3390/s21072554
  15. Yuliarto B., Gumilar G., Septiani N.L.W. // Adv. Mater. Sci. Eng. 2015. V. 2015. P. 1. https://doi.org/10.1155/2015/694823
  16. Pazniak H., Plugin I.A., Sheverdyaeva P.M. et al. // Sensors. 2024. V. 1. № 1. P. 38. https://doi.org/https://doi.org/10.3390/s24010038
  17. Szczurek A., Gonstał D., Maciejewska M. // Sensors. 2024. V. 24. № 5. P. 1461. https://doi.org/10.3390/s24051461
  18. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
  19. Fedorov F.S., Simonenko N.P., Trouillet V. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 50. P. 56135. https://doi.org/10.1021/acsami.0c14055
  20. Ivanov S., Todorov T., Nenov T. et al. // Int. Conf. Autom. Informatics, IEEE, 2023. P. 290. https://doi.org/10.1109/ICAI58806.2023.10339030
  21. Qian J., Tian F., Luo Y. et al. // IEEE Trans. Ind. Electron. 2022. V. 69. № 5. P. 5314. https://doi.org/10.1109/TIE.2021.3080218
  22. Qian J., Luo Y., Tian F. et al. // IEEE Trans. Ind. Electron. 2021. V. 68. № 7. P. 6276. https://doi.org/10.1109/TIE.2020.3000114
  23. Devabharathi N., M. Umarji A., Dasgupta S. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 51. P. 57207. https://doi.org/10.1021/acsami.0c14704
  24. Bhati V.S., Kumar M., Banerjee R. // J. Mater. Chem. С. 2021. V. 9. № 28. P. 8776. https://doi.org/10.1039/D1TC01857D
  25. Ravi Kumar Y., Deshmukh K., Kovářík T. et al. // Coord. Chem. Rev. 2022. V. 461. P. 214502. https://doi.org/10.1016/j.ccr.2022.214502
  26. Sett A., Rana T., Rajaji U. et al. // Sens. Actuators, A: Phys. 2022. V. 338. P. 113507. https://doi.org/10.1016/j.sna.2022.113507
  27. Tan W.C., Ang K. // Adv. Electron. Mater. 2021. V. 7. № 7. https://doi.org/10.1002/aelm.202001071
  28. Nahirniak S., Saruhan B. // Sensors. 2022. V. 22. № 3. P. 972. https://doi.org/10.3390/s22030972
  29. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 850. P. 1. https://doi.org/10.3390/nano13050850
  30. Xin M., Li J., Ma Z. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.00297
  31. Kim S.J., Koh H.J., Ren C.E. et al. // ACS Nano. 2018. V. 12. № 2. P. 986. https://doi.org/10.1021/acsnano.7b07460
  32. Wang J., Yang Y., Xia Y. // Sens. Actuators, B: Chem. 2022. V. 353. P. 131087. https://doi.org/10.1016/j.snb.2021.131087
  33. Majhi S.M., Ali A., Greish Y.E. et al. // ACS Appl. Electron. Mater. 2022. V. 4. № 8. P. 4094. https://doi.org/10.1021/acsaelm.2c00717
  34. Shuvo S.N., Ulloa Gomez A.M., Mishra A. et al. // ACS Sensors. 2020. V. 5. № 9. P. 2915. https://doi.org/10.1021/acssensors.0c01287
  35. Lee E., Kim D.-J. // J. Electrochem. Soc. 2020. V. 167. № 3. P. 037515. https://doi.org/10.1149/2.0152003JES
  36. Wu M., He M., Hu Q. et al. // ACS Sensors. 2019. V. 4. № 10. P. 2763. https://doi.org/10.1021/acssensors.9b01308
  37. Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
  38. Zhou L., Hu Y., Li S. et al. // Appl. Phys. Lett. 2023. V. 123. № 16. https://doi.org/10.1063/5.0175767
  39. Kang S., Mirzaei A., Shin K.Y. et al. // Sens. Actuators, B: Chem. 2023. V. 375. P. 132882. https://doi.org/10.1016/j.snb.2022.132882
  40. Liu S., Wang M., Ge C. et al. // Sens. Actuators, B: Chem. 2022. V. 365. P. 131919. https://doi.org/10.1016/j.snb.2022.131919
  41. Zhang B., Li C., Li M. et al. // Nanomaterials. 2022. V. 12. № 24. P. 4464. https://doi.org/10.3390/nano12244464
  42. Liu X., Zhang H., Shen T. et al. // Ceram. Int. 2024. V. 50. № 1. P. 2459. https://doi.org/10.1016/j.ceramint.2023.11.032
  43. Yang E., Park K.H., Oh T. et al. // Sens. Actuators, B: Chem. 2024. V. 409. P. 135542. https://doi.org/10.1016/j.snb.2024.135542
  44. Yu H., Dai L., Liu Y. et al. // J. Alloys Compd. 2023. V. 962. P. 171170. https://doi.org/10.1016/j.jallcom.2023.171170
  45. Zhu X., Li J., Chang X. et al. // Appl. Surf. Sci. 2024. V. 660. P. 159976. https://doi.org/10.1016/j.apsusc.2024.159976
  46. Zhang D., Jiang J., Yang Y. et al. // Sens. Actuators, B: Chem. 2024. V. 410. P. 135727. https://doi.org/10.1016/j.snb.2024.135727
  47. Chu L., Yan H., Xie W. et al. // Chin. Chem. Lett. 2023. V. 34. № 8. P. 108512. https://doi.org/10.1016/j.cclet.2023.108512
  48. Wang C., Li R., Feng L. et al. // Chemosensors. 2022. V. 10. № 3. P. 109. https://doi.org/10.3390/chemosensors10030109
  49. Wang Z., Wang F., Hermawan A. et al. // J. Mater. Sci. Technol. 2021. V. 73. P. 128. https://doi.org/10.1016/j.jmst.2020.07.040
  50. Zhang Y., Wang M.-Y., San X.-G. et al. // Rare Met. 2024. V. 43. № 1. P. 267. https://doi.org/10.1007/s12598-023-02456-0
  51. Liang D., Song P., Liu M. et al. // Ceram. Int. 2022. V. 48. № 7. P. 9059. https://doi.org/10.1016/j.ceramint.2021.12.089
  52. Xu X., Jiang H., Liu W. et al. // ACS Appl. Nano Mater. 2024. V. 7. № 4. P. 4324. https://doi.org/10.1021/acsanm.3c05859
  53. Wu P., Li Y., Xiao S. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 42. P. 48200. https://doi.org/10.1021/acsami.2c11216
  54. Zhu M., Deng X., Feng Z. et al. // J. Alloys Compd. 2021. V. 886. P. 161139. https://doi.org/10.1016/j.jallcom.2021.161139
  55. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  56. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
  57. Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
  58. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
  59. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
  60. Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
  61. Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49. № 22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
  62. Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
  63. Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
  64. Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. С. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
  65. Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
  66. Mokrushin A.S., Simonenko Т.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. P. 159090. https://doi.org/10.1016/j.jallcom.2021.159090
  67. Mokrushin A.S., Simonenko Т.L., Simonenko N.P. et al. // Appl. Surf. Sci. 2022. V. 578. P. 151984. https://doi.org/10.1016/j.apsusc.2021.151984
  68. Mokrushin A.S., Nagornov I.A., Simonenko Т.L. et al. // Mater. Sci. Eng. B. 2021. V. 271. P. 115233. https://doi.org/10.1016/j.mseb.2021.115233
  69. Wyckoff R.W.G. // Cryst. Struct. 1963. V. 1. P. 85.
  70. Lane N.J., Vogel S.C., Caspi E.N. et al. // J. Appl. Phys. 2013. V. 113. № 18. P. 183519. https://doi.org/10.1063/1.4803700
  71. Baur W.H., Khan A.A. // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1971. V. 27. № 11. P. 2133. https://doi.org/10.1107/S0567740871005466
  72. Wyckoff R.W.G. // Cryst. Struct. 1963. P. 239.
  73. Yang Z., Liu A., Wang C. et al. // ACS Sensors. 2019. V. 4. № 5. P. 1261. https://doi.org/10.1021/acssensors.9b00127
  74. Koh H.-J., Kim S.J., Maleski K. et al. // ACS Sensors. 2019. V. 4. № 5. P. 1365. https://doi.org/10.1021/acssensors.9b00310
  75. Liu S., Wang M., Liu G. et al. // Appl. Surf. Sci. 2021. V. 567. P. 150747. https://doi.org/10.1016/j.apsusc.2021.150747
  76. Zhang C., Zhang Y., Cao K. et al. // Ceram. Int. 2021. V. 47. № 5. P. 6463. https://doi.org/10.1016/j.ceramint.2020.10.229
  77. Han Y., Cao H., Cao Y. et al. // J. Mater. Chem. С. 2024. V. 12. № 13. P. 4809. https://doi.org/10.1039/D4TC00111G

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. X-ray radiographs of the powders of the original MAX phase Ti2AlC, the synthesised Ti2CTx multilayer maxene and the receptor layer of the Ti2CTx-10 mol% SnO2 nanocomposite.

Жүктеу (247KB)
3. Fig. 2. Microstructure of the Ti2CTx-10 mol% SnO2 composite powder according to SEM data. Green arrows indicate the embedding of SnO2 nanoparticles between the layers of accordion-like maxene Ti2CTx.

Жүктеу (750KB)
4. Fig. 3. Microstructure of the Ti2CTx-10 mol% SnO2 receptor layer according to SEM data.

Жүктеу (795KB)
5. Fig. 4. Selectivity diagram of the Ti2CTx-10 mol% SnO2 composite coating composed of the responses to different gases (100 ppm CO, NH3, NO2, C6H6, C3H6O, C2H5OH, 1000 ppm H2, CH4, 10% O2 and 23% ΔRH). The ‘+’ sign corresponds to an increase in electrical resistance and the ‘-’ sign corresponds to a decrease. All measurements were performed at room temperature and relative humidity 23 ± 1%.

Жүктеу (82KB)
6. Fig. 5. Responses of Ti2CTx-10 mol% SnO2 composite coating to ΔRH = 2-54% (a); response dependence on ΔRH in gas atmosphere (b). All measurements were performed at room temperature and relative humidity of 23 ± 1%.

Жүктеу (164KB)
7. Fig. 6. Signal reproducibility of Ti2CTx-10 mol% SnO2 composite coating on the change of relative humidity ΔRH = 6%. All measurements were performed at room temperature and relative humidity of 23 ± 1%.

Жүктеу (149KB)

© Russian Academy of Sciences, 2024