Synthesis, crystal structure and thermodynamic properties of Ca3Y2Ge3O12 germanate
- Authors: Denisova L.T.1, Belokopytova D.V.1, Kargin Y.F.2, Vasil’ev G.V.1, Denisov V.M.1, Beletskii V.V.1
-
Affiliations:
- Siberian Federal University
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- Issue: Vol 69, No 9 (2024)
- Pages: 1291-1295
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/676636
- DOI: https://doi.org/10.31857/S0044457X24090093
- EDN: https://elibrary.ru/JSTXYO
- ID: 676636
Cite item
Abstract
Orthogermanate Ca3Y2Ge3O12 has been prepared by solid-phase method from CaCO3, Y2O3 and GeO2 by firing in air at a temperature of 1773 K. Using X-ray diffraction, its crystal structure was clarified (sp. gr. Iad, a =12.80255(14) Å, V = 2098.34(7) Å3). The high-temperature heat capacity of oxide compound has been determined in the temperature range 320–1000 K by differential scanning calorimetry and the experimental data have been used to evaluate thermodynamic properties of Ca3Y2Ge3O12.
Full Text

About the authors
L. T. Denisova
Siberian Federal University
Author for correspondence.
Email: ldenisova@sfu-kras.ru
Russian Federation, Krasnoyarsk, 660041
D. V. Belokopytova
Siberian Federal University
Email: ldenisova@sfu-kras.ru
Russian Federation, Krasnoyarsk, 660041
Yu. F. Kargin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: ldenisova@sfu-kras.ru
Russian Federation, Moscow, 119991
G. V. Vasil’ev
Siberian Federal University
Email: ldenisova@sfu-kras.ru
Russian Federation, Krasnoyarsk, 660041
V. M. Denisov
Siberian Federal University
Email: ldenisova@sfu-kras.ru
Russian Federation, Krasnoyarsk, 660041
V. V. Beletskii
Siberian Federal University
Email: ldenisova@sfu-kras.ru
Russian Federation, Krasnoyarsk, 660041
References
- Piccinelli F., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
- Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
- Tang Y., Zhang Z., Li J. et al. // J. Eur. Ceram. Soc. 2020. V. 40. P. 3989. https://doi.org/10.1016/j.eurceramsoc.2020.04.052
- Mao N., Liu S., Song Z. et al. // J. Alloys Compd. 2021. V. 863. P. 158699. https://doi.org/10.1016/j.jallcom.2021.158699
- Ji C., Huang Z., Tian X. et al. // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
- Li Y., Shao Y., Zhang W et al. // J.Am. Ceram. Soc. 2021. V. 104. P. 6299. https://doi.org/10.1111/jace.18015
- Cui J., Cao L., Wang X. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.118170
- Cui J., Zheng Y., Wang Z. et al. // Mater. Adv. 2022. V. 3. P. 2772. https://doi.org/10.1039/d2ma00009a
- Леонидов И.И. // Тез. IX Национальной кристаллохимической конф. Суздаль, 4–8 июня 2018. М.: Граница, 2018. С. 69.
- Fiquet G., Gillet P., Richet P. et al. // Phys. Chem. Miner. 1992. V. 18. P. 469. https://doi.org/10.1007/BF00200970
- Shuchunov A.N., Gorshkov O.N., Smirnova N.N. et al. // J. Chem. Thermodyn. 2014. V. 78. P. 58. https://doi.org/10.1016/j.jct.2014.06.019
- Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
- Isaacs I. // Experientia. 1969. V. 25. P. 239. https://doi.org/10.1007/BF02034364
- Lévy D., Barbier J. // Acta Crystallogr. Sect. С. 1999. V. 56. P. 1611.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
- Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. // Неорган. материалы. 2017. Т. 53. № 9. С. 975. https://doi.org/10.7868/S0002337X17090111
- Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Spencer P.J. // Thermochim. Acta. 1998. V. 314. P. 1. https://doi.org/10.1016/S0040-6031(97)00469-3
- Кумок В.Н. // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
- Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
- Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1967. 451 с.
- Morss L.R., Konings R.J.M. // Binary rare earth oxides. N.Y.: Kluwer Academ. Publishers., 2004. P. 163.
- Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 338. https://doi.org/10.7868/S0044457X1803011X
Supplementary files
