Heat Capacity and Magnetic Properties of PrMgAl11O19

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Isobaric heat capacity of magnesium-praseodymium hexaaluminate PrMgAl11O19 with magnetoplumbite structure was measured by three calorimetric methods in the temperature range 2–1865 K. Heat capacity values were docked and smoothed to calculate thermodynamic functions (entropy, enthalpy change and derived Gibbs energy) in the mentioned temperature region. A gentle anomaly of heat capacity with a maximum of about 8 K was found, its entropy and enthalpy were calculated. Magnetic properties of PrMgAl11O19 have been studied using the method of dynamic magnetic susceptibility in the temperature range 2–300 K. Based on the results of measurements of magnetic properties, an anomaly was found on the imaginary component of dynamic magnetic susceptibility, the temperature range of which is consistent with the area of the anomaly of heat capacity.

Texto integral

Acesso é fechado

Sobre autores

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  3. Bansal N.P., Zhu D. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  4. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  5. Friedrich C., Gadow R., Schirmer T.J. // Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  6. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  7. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596(89)90048-0
  8. Lee K.N. Protective Coatings for Gas Turbines, The Gas Turbine Handbook, Section 4.4.2, U.S. Department of Energy, NETL, 2006, p. 431.
  9. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  10. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076
  11. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  12. Halvarsson M., Langer V., Vuorinen S. // Surf. Coat. Technol. 1995. V. 76–77. P. 358. https://doi.org/10.1016/0257-8972(95)02558-8
  13. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  14. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  15. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  16. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050.
  17. Lu H., Wang C.-A., Zhang C., Tong S. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  18. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  19. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052.
  20. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.
  21. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  25. Colwelland J.H., Magnum B.W. // J. Appl. Phys. 1967. V. 38. P. 1468.
  26. Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  27. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  28. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. (в печати)
  29. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1668. al.
  30. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  31. Gruber G.B., Justice B.H., Westrum E.F., Zandi B. // J. Chem. Thermodyn. 2002. V. 34. P. 457. https://doi.org/ 10.1006/jcht.2001.0860
  32. Chase M.W. Jr. NIST-JANAF Thermochemical Tables. Am. Chem. Soc., 1998.
  33. Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH, 1995.
  34. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. P. 159.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Appendix
Baixar (948KB)
3. Fig. 1. Temperature dependence of the heat capacity of PrMgAl11O19.

Baixar (122KB)
4. Fig. 2. Heat capacity in the low-temperature anomaly region: 1 - heat capacity of PrMgAl11O19, 2 - heat capacity of LaMgAl11O19 [27], dashed line - (Cp(LaMgAl11O19) + CSCh (50 cm-1).

Baixar (84KB)
5. Fig. 3. Difference between the heat capacities of PrMgAl11O19 determined in the present work and calculated by the Neumann-Kopp rule: 1 - by relation (5) (∆), 2 - by relation (6) (○). Dashed line 3 corresponds to the difference of 2.5%.

Baixar (77KB)
6. Fig. 4. Temperature dependences of the real (χʹ, empty symbols) and imaginary (χʺ, filled symbols) parts of the dynamic magnetic susceptibility of the PrMgAl11O19 sample in a zero magnetic field at different frequencies. The amplitude of the alternating magnetic field is 1 E.

Baixar (121KB)
7. Fig. 5. Temperature dependences of the imaginary component of the dynamic magnetic susceptibility of the PrMgAl11O19 sample in a 1000 E magnetic field at different frequencies. The amplitude of the alternating magnetic field is 1 E.

Baixar (106KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024