DOPED LITHIUM TITANATES AND THEIR COMPOSITES WITH CARBON NANOTUBES AS ANODES FOR LITHIUM-ION BATTERIES
- Авторлар: Stenina I.A.1, Kulova T.L.2, Yaroslavtsev А.B.1
-
Мекемелер:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Шығарылым: Том 69, № 11 (2024)
- Беттер: 2306-2316
- Бөлім: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/676627
- DOI: https://doi.org/10.31857/S0044457X24110148
- EDN: https://elibrary.ru/JKDHAQ
- ID: 676627
Дәйексөз келтіру
Аннотация
Lithium titanates Li4+xTi5–xMxO12 (M = Sc, Ga, Al, Cr; x= 0, 0.05, 0.1, 0.15) and their composites with carbon nanotubes were synthesized by the sol-gel method and characterized using X-ray diffraction, scanning electron microscopy, impedance and 7Li MAS NMR spectroscopy; their electrochemical testing was carried out. Doping with trivalent cations leads to a decrease in the mobility of lithium ions in Li4+xTi5–xMxO12, which indicates the dominance of lithium transport through vacancies in these materials. The best electrochemical characteristics are demonstrated by the Li4+xTi5–xMxO12 composites with carbon nanotubes.
Негізгі сөздер
Авторлар туралы
I. Stenina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: stenina@igic.ras.ru
Moscow, Russia
T. Kulova
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscow, Russia
А. Yaroslavtsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Әдебиет тізімі
- Dunn B., Kamath H., Tarascon J.-M. // Science. 2011. V. 334. P. 928. https://doi.org/10.1126/science.1212741
- Varzi A., Thanner K., Scipioni R. et al. // J. Power Sources. 2020. V. 480. P. 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
- Chen Y., Kang Y., Zhao Y. et al. // J. Energy Chem. 2021. V. 59. P. 83. doi.org/10.1016/j.jechem.2020.10.017
- Sashmitha K., Rani M.U. // Polym. Bull. 2023. V. 80. P. 89. https://doi.org/10.1007/s00289-021-04008-x
- Li Y., Li Y., Zhang L. et al. // J. Energy Chem. 2023. V. 77. P. 123. https://doi.org/10.1016/j.jechem.2022.10.026
- Hossain Md.H., Chowdhury M.A., Hossain N. et al. // Chem. Eng. J. Adv. 2023. V. 16. P. 100569. https://doi.org/10.1016/j.ceja.2023.100569
- Siller V., Gonzalez-Rosillo J.C., Nunez Eroles M. et al. // Mater. Today Energy. 2022. V. 25. P.100979. https://doi.org/10.1016/j.mtener.2022.100979
- Liu R., Ma G., Li H. // Ferroelectrics. 2021. V. 580. P. 172. https://doi.org/10.1080/00150193. 2021.1905737
- Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
- Yan H., Zhang D., Qilu et al. // Ceramics Int. 2021. V. 47. P. 5870. https://doi.org/10.1016/j.ceramint.2020.10.241
- Pal S., Roy S., Jalagam P. et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 969. https://doi.org/10.1021/acsaem.0c02929
- Han C., He Y.-B., Liu M. et al. // J. Mater. Chem. A. 2017. V. 5. P. 6368. https://doi.org/10.1039/C7TA00303J
- Xu X., Carr C., Chen X. et al. // Adv. Energy Mater. 2021. V. 11. P. 2003309. https://doi.org/10.1002/aenm.202003309
- Zhu C., Fuchs T.,Weber S.A.L. et al. // Nat.Commun. 2023. V. 14. P. 1300. https://doi.org/10.1038/s41467-023-36792-7
- Bai X., Li T., Bai Y.-J. // Dalton Trans. 2020. V. 49. P. 10003. https://doi.org/10.1039/D0DT01719A
- Stenina I.A., Kulova T.L., Skundin A.M. et al. // Mater. Res. Bull. 2016. V. 75. P. 178. https://doi.org/10.1016/j.materresbull.2015.11.050
- Yi T.-F., Wei T.-T., Li Y. et al. // Energy Storage Mater. 2020. V. 26 P. 165. https://doi.org/10.1016/j.ensm.2019.12.042
- Zhang E., Zhang H. // Ceram. Int. 2019. V. 45. P. 7419. https://doi.org/10.1016/j.ceramint.2019.01.030
- Stenina I.A., Shaydullin R.R., Desyatov A.V. et al. // Electrochim. Acta. 2020. V. 364. P. 137330. https://doi.org/10.1016/j.electacta.2020.137330
- Li J., Zhang T., Han C. et al. // J. Mater. Chem. A. 2019. V. 7. P. 455. https://doi.org/10.1039/C8TA10680K
- Meng Q., Hao Q., Chen F. et al. // Mater. Charact. 2023. V. 203. P. 113089. https://doi.org/10.1016/j.matchar.2023.113089
- Deng X., Li W., Zhu M. et al. // Solid State Ionics. 2021. V. 364. P. 115614. https://doi.org/10.1016/j.ssi.2021.115614
- Hu Y.,Wang L., Zhu C. et al. // Appl. Surf. Sci. 2024. V. 656. P. 159619. https://doi.org/10.1016/j.apsusc.2024.159619
- Yin Y., Luo X., Xu B. // J. Alloys Compd. 2022. V. 904. P. 164026. https://doi.org/10.1016/j.jallcom.2022.164026
- Wang H., Wang L., Lin J. et al. // Electrochim. Acta. 2021. V. 368. P. 137470. https://doi.org/10.1016/j.electacta.2020.137470
- Yaroslavtsev A.B., Stenina I.A. // Surf. Innov. 2021. V. 9. P. 92. https://doi.org/10.1680/jsuin.20.00044
- Ding S., Jiang Z., Gu J. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 148. https://doi.org/10.1007/s11705-020-2022-x
- Li X., Huang X., Chen Y. et al. // Electrochim. Acta. 2021. V. 390. P. 138874. https://doi.org/10.1016/j.electacta.2021.138874
- Ma G., Deng L., Liu R. et al. // J. Solid State Electrochem. 2022. V. 26. P. 2893. https://doi.org/10.1007/s10008-022-05296-7
- Ke J., Zhang Y., Wen Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 4428. https://doi.org/10.1039/D2TA09502E
- Jang I.-S., Kang S.H., Kang Y.C. et al. // Appl. Surf. Sci. 2022. V. 605. P. 154710. https://doi.org/10.1016/j.apsusc.2022.154710
- Stenina I., Shaydullin R., Kulova T. et al. // Energies. 2020. V. 13. P. 3941. https://doi.org/10.3390/en13153941
- Iniguez F.B., Jeong H., Mohamed A.Y. et al. // J. Ind. Eng. Chem. 2022. V. 112. P. 125. https://doi.org/10.1016/j.jiec.2022.05.005
- Liu K., Wang J., Man J. et al. // Int. J. Energy Res. 2021. V. 45. P. 4345. https://doi.org/10.1002/er.6100
- Nezamzadeh Ezhyeh Z., Khodaei M., Torabi F. // Ceram. Int. 2023. V. 49. P. 7105. https://doi.org/10.1016/j.ceramint.2022.04.340
- Hou L., Qin X., Gao X. et al. // J. Alloys Compd. 2019. V. 774. P. 38. https://doi.org/10.1016/j.jallcom.2018.09.364
- Ncube N.M., Mhlongo W.T., McCrindle R.I. et al. // Mater. Today: Proceed. 2018. V. 5. P. 10592. https://doi.org/10.1016/j.matpr.2017.12.392
- Meng Q., Chen F., Hao Q. et al. // J. Alloys Compd. 2021. V. 885. P. 160842. https://doi.org/10.1016/j.jallcom.2021.160842
- Kulova T.L., Kreshchenova Y.M., Kuz’mina A.A. et al. // Mendeleev Commun. 2016. V. 26. P. 238. https://doi.org/10.1016/j.mencom.2016.05.005
- Zou S., Wang G., Zhang Y. et al. // J. Alloys Compd. 2020. V. 816. P. 152609. https://doi.org/10.1016/j.jallcom.2019.152609
- Stenina I.A., Sobolev A.N., Yaroslavtsev S.A. et al. // Electrochim. Acta. 2016. V. 219. P. 524. https://doi.org/10.1016/j.electacta.2016.10.034
- Стенина И.А., Соболев А. Н., Кулова Т. Л. и др. // Журн. неорган. химии. 2022. Т. 67.№6. С. 829.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925. https://doi.org/10.1107/S0567740869003220
Қосымша файлдар
