SYNTHESIS OF Ti2AlC IN KBr MELT: EFFECT OF TEMPERATURE AND COMPONENT RATIO
- Authors: Simonenko E.P.1, Nagornov I.A.1, Mokrushin A.S.1, Sapronova V.M.1,2, Gorobtsov P.Y.1, Simonenko N.P.1, Kuznetsov N.T.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Mendeleev Russian University of Chemical Technology, Mendeleev Russian Chemical and Technological University
- Issue: Vol 69, No 11 (2024)
- Pages: 2283-2294
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/676624
- DOI: https://doi.org/10.31857/S0044457X24110128
- EDN: https://elibrary.ru/JKJOHO
- ID: 676624
Cite item
Abstract
About the authors
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
Moscow, Russia
I. A. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. S. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
V. M. Sapronova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Mendeleev Russian University of Chemical Technology, Mendeleev Russian Chemical and Technological UniversityMoscow, Russia; Moscow, Russia
Ph. Yu. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
References
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67.№5. P. 705. https://doi.org/ 10.1134/S0036023622050187
- Haftani M., Saeedi Heydari M., Baharvandi H.R. et al. // Int. J. Refract. Met. Hard Mater. 2016. V. 61. P. 51. https://doi.org/ 10.1016/j.ijrmhm.2016.07.006
- Tallman D.J., Anasori B., Barsoum M.W. // Mater. Res. Lett. 2013. V. 1.№3. P. 115. https://doi.org/ 10.1080/21663831.2013.806364
- Elsenberg A., Busato M., Gartner F. et al. // J. Therm. Spray Technol. 2021. V. 30.№3. P. 617. https://doi.org/ 10.1007/s11666-020-01110-w
- Poulou A., Mellan T.A., Finnis M.W. // Phys. Rev. Mater. 2021. V. 5.№3. P. 033608. https://doi.org/10.1103/PhysRevMaterials.5.033608
- Aydinyan S. // Ceram. Int. 2024. V. 50.№7. P. 12263. https://doi.org/10.1016/j.ceramint.2024.01.130
- Li Z., Zhang Y., Wang K. et al. // Corros. Sci. 2024. V. 228. P. 111820. https://doi.org/10.1016/j.corsci.2024.111820
- Liu P.,Wang Z., Ye F. et al. // Composites Part B: Eng. 2024. V. 273. P. 111259. https://doi.org/10.1016/j.compositesb.2024.111259
- Lee H., Kim S.Y., Lee Y. et al. // J. Am. Ceram. Soc. 2023. V. 106.№12. P. 7230. https://doi.org/10.1111/jace.19217
- Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16.№18. P. 6133. https://doi.org/10.3390/ma16186133
- Bharti B., Kumar Y., Gupta M. et al. // ECS Trans. 2022. V. 107.№1. P. 1751. https://doi.org/10.1149/10701.1751ecst
- Aslam M.K., Xu M. // Nanoscale. 2020. V. 12.№30. P. 15993. https://doi.org/10.1039/D0NR04111D
- Cichero M.C., Zimnoch Dos Santos J.H. // Mater. Res. Found. 2019. V. 51. P. 1. https://doi.org/10.21741/9781644900253-1
- Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13.№5. P. 850. https://doi.org/10.3390/nano13050850
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16.№13. P. 4506. https://doi.org/10.3390/ma16134506
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/ S0036023622601222
- Ganesh P.-S., Kim S.-Y. // J. Ind. Eng. Chem. 2022. V. 109. P. 52. https://doi.org/10.1016/j.jiec.2022.02.006
- Sivasankarapillai V.S., Sharma T.S.K., Hwa K.-Y. et al. // ES Energy Environ. 2022. V. 15. P. 4. https://doi.org/10.30919/esee8c618
- Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
- Shah N., Wang X., Tian J. // Mater. Chem. Front. 2023. V. 7.№19. P. 4184. https://doi.org/10.1039/D3QM00216K
- Li K., Zhang S., Li Y. et al. // Chinese J. Catal. 2021. V. 42.№1. P. 3. https://doi.org/10.1016/S1872-2067(20)63630-0
- Xie X., Zhang N. // Adv. Funct. Mater. 2020. V. 30. №36. P. 2002528. https://doi.org/10.1002/adfm.202002528
- Liu Z., Sun C., Xu M. et al. // Mater. Lett. 2024.V. 365. P. 136437. https://doi.org/10.1016/j.matlet.2024.136437
- Wang W., Xu J., Zuo J. et al. // Acta Metall. Sin. (English Lett). 2024. V. 37.№4. P. 739. https://doi.org/10.1007/s40195-023-01647-z
- Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. V. 267. P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625
- Hoffman E.N., Vinson D.W., Sindelar R.L. et al. // Nucl. Eng. Des. 2012. V. 244. P. 17. https://doi.org/10.1016/j.nucengdes.2011.12.009
- Qiu B.,Wang J., Deng Y. et al. // Nucl. Eng. Technol. 2020. V. 52.№1. P. 1. https://doi.org/10.1016/j.net.2019.07.030
- Azina C., Badie S., Litnovsky A. et al. // Sol. Energy Mater. Sol. Cells. 2023. V. 259. P. 112433. https://doi.org/10.1016/j.solmat.2023.112433
- Ma H.-B., Xue J.-X., Zhai J.-H. et al. // Ceram. Int. 2020. V. 46.№9. P. 14269. https://doi.org/10.1016/j.ceramint.2020.02.155
- Fitriani P., Yoon D.-H. // Ceram. Int. 2018. V. 44. №18. P. 22943. https://doi.org/10.1016/j.ceramint.2018.09.090
- Fitriani P., Septiadi A., Hyuk J.D. et al. // J. Eur. Ceram. Soc. 2018. V. 38.№10. P. 3433. https://doi.org/10.1016/j.jeurceramsoc.2018.04.006
- Septiadi A., Fitriani P., Sharma A.S. et al. // J. Korean Ceram. Soc. 2017. V. 54.№4. P. 340. https://doi.org/10.4191/kcers.2017.54.4.08
- Jimenez C., Mergia K., Lagos M. et al. // J. Eur. Ceram. Soc. 2016. V. 36.№3. P. 443. https://doi.org/10.1016/j.jeurceramsoc.2015.09.038
- Katoh Y., Snead L.L., Cheng T. et al. // J. Nucl. Mater. 2014. V. 448.№1–3. P. 497. https://doi.org/10.1016/j.jnucmat.2013.10.002
- Wu J., Yan J., Peng H. et al. // J. Eur. Ceram. Soc. 2024. V. 44.№6. P. 3777. https://doi.org/10.1016/j.jeurceramsoc.2023.12.097
- Chen W., Chen J., Zhu M. et al. // J. Eur. Ceram. Soc. 2021. V. 41.№13. P. 6248. https://doi.org/10.1016/j.jeurceramsoc.2021.06.037
- Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104.№4. P. 1669. https://doi.org/10.1111/jace.17582
- Cai L., Huang Z., Hu W. et al. // Int. J. Appl. Ceram. Technol. 2018. V. 15.№5. P. 1212. https://doi.org/ 10.1111/ijac.12902
- Naik Parrikar P., Benitez R., Gao H. et al. // Exp. Mech. 2017. V. 57.№5. P. 675. https://doi.org/10.1007/s11340-017-0264-4
- Bei G., Pedimonte B., Fey T. et al. // J. Am. Ceram. Soc. 2013. V. 96.№5. P. 1359. https://doi.org/10.1111/jace.12358
- He G., Zhang Y., Yao P. et al. // J. Mater. Sci. Technol. 2023. V. 137. P. 91. https://doi.org/10.1016/j.jmst.2022.07.037
- Rangaraj L., Kashimatt V., Pooja et al. // Int. J. Appl. Ceram. Technol. 2022. https://doi.org/10.1111/ijac.14064
- Podhurska V.Y., Ostash O.P., Vasyliv B.D. et al. // Wear Resistance of Ti–Al–C MAX Phases-Based Materials for Pantographs Inserts of Electric Vehicles. 2021. Р. 607. https://doi.org/10.1007/978-3-030-51905-6_42
- Liu Z., Yang J., Qian Y. et al. // Ceram. Int. 2020. V. 46.№14. P. 22854. https://doi.org/10.1016/j.ceramint.2020.06.055
- Magnus C., Cooper D., Sharp J. et al. // Wear. 2019. V. 438–439. P. 203013. https://doi.org/10.1016/j.wear.2019.203013
- Hu L., Kothalkar A., Proust G. et al. // J. Alloys Compd. 2014. V. 610. P. 635. https://doi.org/10.1016/j.jallcom.2014.04.224
- Chen Y.L., Zhu X.Y., Lu P.J. et al. // Appl. Mech. Mater. 2014. V. 543–547. P. 3869. https://doi.org/10.4028/www.scientific.net/AMM.543547.3869
- Liu X., Jia Q., Zhang S. et al. // Int. Mater. Rev. 2024. V. 69.№2. P. 107. https://doi.org/10.1177/09506608231219864
- Galvin T., Hyatt N.C., Rainforth W.M. et al. // J. Eur. Ceram. Soc. 2018. V. 38.№14. P. 4585. https://doi.org/10.1016/j.jeurceramsoc.2018.06.034
- Dash A., Va.en R., Guillon O. et al. // Nat. Mater. 2019. V. 18.№5. P. 465. https://doi.org/10.1038/s41563-019-0328-1
- Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9.№24. P. 7697. https://doi.org/10.1039/D1TC01338F
- Nadimi H., Soltanieh M., Sarpoolaky H. // Ceram. Int. 2022. V. 48.№7. P. 9024. https://doi.org/10.1016/j.ceramint.2021.12.084
- Liu Z., Xu J., Xi X. et al. // Ceram. Int. 2023. V. 49. №1. P. 168. https://doi.org/10.1016/j.ceramint.2022.08.325
- Zhong Y., Liu Y., Jin N. et al. // J. Am. Ceram. Soc. 2023. V. 106.№9. P. 5567.https://doi.org/10.1111/jace.19178
- Zhang Z., Zhou Y., Wu S. et al. // Ceram. Int. 2023. V. 49.№22. P. 36942. https://doi.org/10.1016/j.ceramint.2023.09.025
- Tan Y., Xia Y., Teng Z. et al. // J. Eur. Ceram. Soc. 2021. V. 41.№8. P. 4658. https://doi.org/10.1016/j.jeurceramsoc.2021.03.027
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14.№4. P. 725. https://doi.org/10.3390/mi14040725
- Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46.№5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
- Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40.№3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- Roy C., Banerjee P., Mondal S. et al. // Mater. Today Chem. 2022. V. 26. P. 101160. https://doi.org/10.1016/j.mtchem.2022.101160
- Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. № 9.
Supplementary files
