Luminescence features of multicomponent cubic fluoride pyrochlores doped with europium ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ceramic samples of multi-component fluorides Na3CaMg3AlF14 and NaCaMg2F7 doped with europium ions have been obtained by solid-phase synthesis. A comparison of the XRD patterns for the obtained compounds confirmed that a new polymorphic modification with a cubic pyrochlore structure has been obtained for Na3CaMg3AlF14 fluoride, which differs from the polymorph of this compound with a rhombohedral structure described in the literature. The addition of NH4(HF2) before the last annealing provided reducing conditions for the stabilization of europium ions exclusively in the 2+ charge state. Eu2+ ions in the synthesized fluoride matrices emit luminescence with a band peak at about 395 nm due to 4f 65d–4f 7 interconfiguration transitions. In these matrices the Eu2+ ions form predominantly one type of optical centers, which provides a fairly narrow band-width of 4f 65d–4f 7 luminescence ~30 nm. Also, in the synthesized ceramics Eu2+ ions emit narrow-line luminescence with a dominant line at ~362 nm, associated with 4f7–4f7 intraconfiguration transitions from the lowest excited state 6P7/2 to the ground state 8S7/2. The synthesized ceramics demonstrate good temperature stability of Eu2+ 4f 65d–4f 7 luminescence with thermal quenching temperature T1/2 equal to 504 and 543 K for Na3CaMg3AlF14:Eu2+ (1.0 at. %) and NaCaMg2F7:Eu2+ (0.5 at. %), respectively. This property may be of interest for the practical application of these phosphors. Additional annealing of ceramics in an argon atmosphere with the addition of NaHF2 instead of NH4(HF2) led to a partial conversion of europium ions from a divalent to a trivalent state. As a result, a series of narrow luminescence lines appears in the red region of the spectrum due to intraconfiguration transitions 4f 6–4f 6 (5D07FJ) in Eu3+ ions.

Full Text

Restricted Access

About the authors

N. M. Khaidukov

Kurnakov Institute of General and Inorganic Chemistry

Author for correspondence.
Email: mbrekh@igic.ras.ru
Russian Federation, Moscow, 119991

М. N. Brekhovskikh

Kurnakov Institute of General and Inorganic Chemistry

Email: mbrekh@igic.ras.ru
Russian Federation, Moscow, 119991

N. Yu. Kirikova

Lebedev Physical Institute

Email: mbrekh@igic.ras.ru
Russian Federation, Moscow, 119991

V. А. Kondratyuk

Lebedev Physical Institute

Email: mbrekh@igic.ras.ru
Russian Federation, Moscow, 119991

V. N. Makhov

Lebedev Physical Institute

Email: mbrekh@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Fang M.-H., Leaño Jr.J.L., Liu R.-S. // ACS Energy Lett. 2018. V. 3. № 10. P. 2573. https://doi.org/10.1021/acsenergylett.8b01408
  2. Hariyani S., Sójka M., Setlur A., Brgoch J. // Nat. Rev. Mater. 2023. V. 8. № 11. P. 759. https://doi.org/10.1038/s41578-023-00605-6
  3. Liao H., Zhao M., Molokeev M.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 36. P. 11728. https://doi.org/10.1002/anie.201807087
  4. Liu R.S. // Chem. Mater. 2023. V. 35. № 16. P. 6179. https://doi.org/10.1021/acs.chemmater.3c01743
  5. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. № 2. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  6. Holliday K., Finkeldei S., Neumeier S. et al. // J. Nucl. Mater. 2013. V. 433. № 1–3. P. 479. https://dx.doi.org/10.1016/j.jnucmat.2012.10.028
  7. Garcia M.A.P., Gupta S.K., Mao Y. // J. Mol. Struct. 2020. V. 1220. P. 128688. https://doi.org/10.1016/j.molstruc.2020.128688
  8. Gupta S.K., Nigam S., Zuniga J.P., Mao Y. // Mater. Today Chem. 2022. V. 24. P. 100931. https://doi.org/10.1016/j.mtchem.2022.100931
  9. Berwal U., Singh V., Sharma R. // J. Lumin. 2023. V. 257. P. 119687. https://doi.org/10.1016/j.jlumin.2023.119687
  10. Sidey V. // Z. Kristallogr. 2017. V. 232. № 10. P. 729. https://doi.org/10.1515/zkri-2017-2057
  11. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Yu. et al. // J. Lumin. 2024. V. 272. P. 120646. https://doi.org/10.1016/j.jlumin.2024.120646
  12. Mumme W.G., Gray I.E., Birch W.D. et al. // Am. Mineral. 2010. V. 95. № 5-6. P. 736.
  13. Oliveira E.A., Guedes I., Ayala A.P. et al. // J. Solid State Chem. 2004. V. 177. № 8. P. 2943. https://doi.org/10.1016/j.jssc.2004.04.055
  14. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. https://doi.org/10.1107/S0021889811038970
  15. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  16. Ryan F.M., Lehmann W., Feldman D.W., Murphy J. // J. Electrochem. Soc. 1974. V. 121. № 11. P. 1475. https://doi.org/10.1149/1.2401714
  17. Henderson B., Imbusch G.F. Optical Spectroscopy of Inorganic Solids. Oxford: Clarendon Press, 1989.
  18. Adachi S. // ECS J. Solid State Sci. Technol. 2023. V. 12. № 1. P. 016002. https://doi.org/10.1149/2162-8777/acaeb9
  19. Meijerink A. // J. Lumin. 1993. V. 55. № 3. P. 125. https://doi.org/10.1016/0022-2313(93)90033-J
  20. Ellens A., Meijerink A., Blasse G. // J. Lumin. 1994. V. 59. № 5. P. 293. https://doi.org/10.1016/0022-2313(94)90056-6
  21. Wegh R.T., Meijerink A. // Phys. Rev. B. 1999. V. 60. № 15. P. 10820. https://doi.org/10.1103/PhysRevB.60.10820
  22. Kirm M., Stryganyuk G., Vielhauer S. et al. // Phys. Rev. B. 2007. V. 75. № 7. P. 075111. https://doi.org/10.1103/PhysRevB.75.075111
  23. Belsky A.N., Krupa J.C. // Displays. 1999. V. 19. № 4. P. 185. https://doi.org/10.1016/S0141-9382(98)00049-3
  24. Joos J.J., Seijo L., Barandiarán Z. // J. Phys. Chem. Lett. 2019 V. 10. № 7. P. 1581. https://doi.org/10.1021/acs.jpclett.9b00342

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of the fluorides Na3CaMg3AlF14 (a) and NaCaMg2F7 (b) synthesized in this work; asterisks indicate reflections belonging to the impurity phase; X-ray diffraction pattern of cubic pyrochlore NaCaMg2F7 (c), generated using the VESTA program using the crystallographic data given in [13]. The Miller indices of the corresponding planes of the crystal lattice (hkl) are indicated next to the peaks.

Download (155KB)
3. Fig. 2. Normalized PL spectra with excitation at a wavelength of 330 nm and PLE spectra recorded at a wavelength of 420 nm, obtained at room temperature for Na3CaMg3AlF14:Eu2+ (1.0 at.%) and NaCaMg2F7:Eu2+ (0.5 at.%) ceramics.

Download (164KB)
4. Fig. 3. Luminescence decay curves detected through 400 nm interference filters upon excitation at 295 nm at room temperature for Na3CaMg3AlF14:Eu2+ (1) and NaCaMg2F7:Eu2+ (2), respectively. The lines show the results of modeling the obtained curves with a single-exponential function with decay times of 280 and 315 ns, respectively.

Download (196KB)
5. Fig. 4. PL spectra for Na3CaMg3AlF14:Eu2+ (1.0 at.%) and NaCaMg2F7:Eu2+ (0.5 at.%) samples at different temperatures. Excitation at a wavelength of λ = 260 nm. The broadened green line highlights the spectra measured at room temperature.

Download (234KB)
6. Fig. 5. Temperature dependences of the integral (in the spectral range of 340–500 nm) luminescence intensity of Na3CaMg3AlF14:Eu2+ (1.0 at.%) and NaCaMg2F7:Eu2+ (0.5 at.%) samples. Excitation at a wavelength of λ = 260 nm. The lines show the simulated temperature dependences obtained using formula (1) at T > 295 K and formula (2) at T < 295 K

Download (154KB)
7. Fig. 6. Simulation using formula (5) of the 4f 65d–4f 7- luminescence spectra of Eu2+ ions in Na3CaMg3AlF14:Eu2+ (1.0 at.%) and NaCaMg2F7:Eu2+ (0.5 at.%) obtained at liquid nitrogen temperature and excitation at a wavelength of 260 nm. The experimental spectra I(λ) were transformed to the scale “per unit of photon energy” using the formula I(E) = I(λ) λ2, and then normalized

Download (158KB)
8. Fig. 7. PL spectra measured at room temperature in the standard mode (red curves) and in the phosphorescence mode (green curves) with excitation at a wavelength of 260 nm for Na3CaMg3AlF14:Eu2+ (1.0 at.%) and NaCaMg2F7:Eu2+ (0.5 at.%). PLE spectra for 5d–4f luminescence (registration at a wavelength of 420 nm, standard mode, blue curves) and for 4f–4f luminescence (registration at a wavelength of 362 nm, phosphorescence mode, black curves) of Eu2+ ions in these ceramics

Download (216KB)
9. Fig. 8. 4f–4f luminescence spectrum of Eu2+ ions measured at different temperatures below 295 K for NaCaMg2F7:Eu2+ (0.5 at.%) with excitation at a wavelength of 260 nm

Download (127KB)
10. Fig. 9. PL spectrum of europium ions in Na3CaMg3AlF14 fluoride after annealing in an argon atmosphere with excitation at a wavelength of 260 nm. PLE spectra of Eu2+ (registration at a wavelength of 420 nm) and Eu3+ (registration at a wavelength of 617 nm) ions for this ceramic

Download (132KB)
11. Fig. 10. Temperature dependences of the luminescence spectrum and (in the inset) the PL intensity integrated in the range of 560–660 nm of Eu3+ ions in Na3CaMg3AlF14 ceramics after annealing in an argon atmosphere. Excitation at a wavelength of 260 nm. The line in the inset is a simple polynomial approximation of the temperature dependence of the PL intensity.

Download (126KB)

Copyright (c) 2024 Russian Academy of Sciences