Carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H4R] based on aromatic carboxylic acids: synthesis and physicochemical properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The series of carboxonium derivatives of the closo-decaborate anion of the general form [2,6-B10H8O2CC6H4R], R=F, CH3, C3H7, C6H5 was obtained. To obtain the target systems, the interaction of the [B10H11] anion with aromatic carboxylic acids was used. This process took place in two stages through the formation of a monosubstituted derivative of the general form [2-B10H9OC(OH)C6H4R], R=F, CH3, C3H7, C6H5, followed by intramolecular cyclization, leading to the formation of the target disubstituted carboxonium derivatives. The structure of the [2,6-B10H8O2CC6H4-C6H5] anion was confirmed by X-ray diffraction analysis. The resulting carboxonium derivatives are capable of protonation to form neutral systems of the general form [2,6-B10H8O2CC6H4R(Hfac)]0, R=F, CH3, C3H7, C6H5. When a protonated carboxonium derivative of acetonitrile is added to a solution, a trisubstituted derivative of the general form [B10H7O2CC6H4R(NCCH3)]0 is formed.

Texto integral

Acesso é fechado

Sobre autores

А. Kolbunova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

I. Klyukin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

N. Selivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

A. Bykov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

A. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

K. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: klukinil@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Hargittai I., Schultz G., Tremmel J. et al. // J.Am. Chem. Soc. 1983. V. 105. № 9. P. 2895. https://doi.org/10.1021/ja00347a061
  2. Moss R.A. // J. Org. Chem. 2017. V. 82. № 5. P. 2307. https://doi.org/10.1021/acs.joc.6b02876
  3. Schneider H. // J. Phys. Org. Chem. 2018. V. 31. № 7. https://doi.org/10.1002/poc.3846
  4. Prakash G.K.S. // J. Org. Chem. 2006. V. 71. № 10. P. 3661. https://doi.org/10.1021/jo052657e
  5. Takami M., Ohshima Y., Yamamoto S. et al. // Faraday Discuss. Chem. Soc. 1988. V. 86. P. 1. https://doi.org/10.1039/dc9888600001
  6. Grommet A.B., Feller M., Klajn R. // Nat. Nanotechnol. 2020. V. 15. № 4. P. 256. https://doi.org/10.1038/s41565-020-0652-2
  7. Wiedemann S.H., Kang D.-H., Bergman R.G. et al. // J.Am. Chem. Soc. 2007. V. 129. № 15. P. 4666. https://doi.org/10.1021/ja0682428
  8. Vasilyev A.V. // Russ. Chem. Rev. 2013. V. 82. № 3. P. 187. https://doi.org/10.1070/RC2013v082n03ABEH004345
  9. McClelland R.A. // Org. React. Mech. Ser. 2010. P. 203. https://doi.org/10.1002/9780470669587.ch7
  10. Moss R.A. // J. Phys. Org. Chem. 2014. V. 27. № 5. P. 374. https://doi.org/10.1002/poc.3290
  11. Lu M., Allemann O., Xu J. et al. // Org. Chem. Front. 2019. V. 6. № 15. P. 2640. https://doi.org/10.1039/C9QO00633H
  12. McNamee R.E., Frank N., Christensen K.E. et al. // Sci. Adv. 2024. V. 10. № 2. https://doi.org/10.1126/sciadv.adj9695
  13. Borch R.F. // J.Am. Chem. Soc. 1968. V. 90. № 19. P. 5303. https://doi.org/10.1021/ja01021a062
  14. Wagen C.C., Jacobsen E.N. // Org. Lett. 2022. V. 24. № 48. P. 8826. https://doi.org/10.1021/acs.orglett.2c03622
  15. Qiu L., Su M., Wen Z. et al. // Eur. J. Org. Chem. 2019. V. 2019. № 18. P. 2914. https://doi.org/10.1002/ejoc.201900338
  16. Olah G.A., Prakash G.K.S., Sommer J. // Science. 1979. V. 206. № 4414. P. 13. https://doi.org/10.1126/science.206.4414.13
  17. Prakash G.K.S., Bae C., Rasul G. et al. // J. Org. Chem. 2002. V. 67. № 4. P. 1297. https://doi.org/10.1021/jo0109974
  18. Laali K.K., Okazaki T., Hansen P.E. // J. Org. Chem. 2000. V. 65. № 12. P. 3816. https://doi.org/10.1021/jo0001939
  19. Olah G.A., Burrichter A., Rasul G. et al. // J. Org. Chem. 1996. V. 61. № 6. P. 1934. https://doi.org/10.1021/jo9516493
  20. Beringer F., Galton S. // J. Org. Chem. 1967. V. 32. № 8. P. 2630. https://doi.org/10.1021/jo01283a602
  21. Mezheritskaya L.V., Dorofeenko G.N. // Chem. Heterocycl. Compd. 1975. V. 11. № 7. P. 761. https://doi.org/10.1007/BF00497290
  22. Paulsen H., Höhne H., Durette P.L. // Chem. Ber. 1976. V. 109. № 2. P. 597. https://doi.org/10.1002/cber.19761090222
  23. Paulsen H., Dammeyer R. // Chem. Ber. 1973. V. 106. № 7. P. 2324. https://doi.org/10.1002/cber.19731060729
  24. Devillard M., Regnier V., Pecaut J. et al. // Org. Chem. Front. 2019. V. 6. № 18. P. 3184. https://doi.org/10.1039/C9QO00298G
  25. Hansmann M.M., Melen R.L., Rominger F. et al. // Chem. Commun. 2014. V. 50. № 55. P. 7243. https://doi.org/10.1039/C4CC01370K
  26. Stogniy M.Y., Anufriev S.A., Sivaev I.B. // Inorganics. 2023. V. 11. № 2. P. 72. https://doi.org/10.3390/inorganics11020072
  27. Stogniy M.Y., Anufriev S.A., Bogdanova E.V. et al. // Dalton Trans. 2024. V. 53. № 7. P. 3363. https://doi.org/10.1039/D3DT03549B
  28. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  29. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2019. P. 983. https://doi.org/10.1080/10426507.2019.1631312
  30. Šícha V., Plešek J., Kvíčalová M. et al. // Dalton Trans. 2009. № 5. P. 851. https://doi.org/10.1039/B814941K
  31. Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. № 8. P. 977. https://doi.org/10.1039/b715363e
  32. Las’kova Y.N., Serdyukov A.A., Sivaev I.B. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 621. https://doi.org/10.1134/S0036023623600612
  33. Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
  34. Mahfouz N., Ghaida F.A., El Hajj Z. et al. // ChemistrySelect. 2022. V. 7. № 21. https://doi.org/10.1002/slct.202200770
  35. Golub I.E., Filippov O.A., Belkova N.V. et al. // Molecules. 2021. V. 26. № 12. https://doi.org/10.3390/molecules26123754
  36. Binder H., Brellochs B., Frei B. et al. // Chem. Ber. 1989. V. 122. № 6. P. 1049. https://doi.org/10.1002/cber.19891220606
  37. Plešek J., Grüner B., Báča J. et al. // J. Organomet. Chem. 2002. V. 649. № 2. P. 181. https://doi.org/10.1016/S0022-328X(02)01115-4
  38. Safronova E.F., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2013. V. 452. № 2. https://doi.org/10.1134/S0012500813110013
  39. Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 11. P. 1247. https://doi.org/10.1134/S0036023614110047
  40. Klyukin I.N., Zhdanov A.P., Matveev E.Y. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
  41. Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Molecules. 2023. V. 28. № 4. https://doi.org/10.3390/molecules28041757
  42. Kolbunova A.V., Klyukin I.N., Novikov A.S. et al. // New J. Chem. 2024. https://doi.org/10.1039/d4nj01048e
  43. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  44. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  45. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  46. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  47. Imai Y., Kamon K., Tajima N. et al. // J. Lumin. 2010. V. 130. № 6. P. 954. https://doi.org/10.1016/j.jlumin.2010.01.004
  48. Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Inorganics. 2023. V. 11. № 5. https://doi.org/10.3390/inorganics11050201

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Preparation of carboxonium derivatives of the closo-decaborate anion [2,6-B10H8O2CC6H4R]–

Baixar (136KB)
3. Fig. 1. Packing of anions in the crystal structure of ((n-C4H9)4N)[2,6-B10H8O2CC6H4–C6H5], tetrabutylammonium cations are not shown for clarity (a). Interplanar distances (in Å) between phenyl rings in anionic dimers (b)

Baixar (356KB)
4. Scheme 2. Preparation of trisubstituted derivatives of the closo-decaborate anion [B10H7O2CC6H4R(NCCH3)]0

Baixar (157KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024