Solid-Vapor Equilibrium under Conditions of Desolvation of Solid Solutions. Topological Isomorphism with Diagrams of Polymorphic Transformations of Solid Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides a proof of analogues of the three Gibbs-Konovalov laws (Gibbs-Rosebom rules) implemented on solid–vapor phase diagrams in ternary systems under conditions of desolvation of solid solutions in the absence of a liquid phase. The topological isomorphism of the diagrams under consideration with diagrams of polymorphic transformations of solid solutions of binary systems is demonstrated, for which analogues of the Gibbs-Konovalov laws are also obtained. The proof is based on the application of generalized Van der Waals differential equations for phase equilibrium shift, written in the metrics of incomplete and full Gibbs potential of solid phases with variable composition. The applicability of the considered analogues is demonstrated by the examples of a number of model systems. Based on the established patterns for solid solution desolvation diagrams, a method for separation and purification of salt components of solid solutions is proposed.

Full Text

Restricted Access

About the authors

N. A. Charykov

East Kazakhstan State Technical University; Saint Petersburg State Technological Institute (Technical University); LETI Electrotechnical University

Author for correspondence.
Email: vvkuznetsov@inbox.ru
Kazakhstan, Ust-Kamenogorsk, 070000; Saint Petersburg, 190013, Russia; Saint Petersburg, 197376, Russia

V. V. Kuznetsov

LETI Electrotechnical University

Email: vvkuznetsov@inbox.ru
Russian Federation, Saint Petersburg, 197376

A. V. Rumyantsev

Saint Petersburg State Technological Institute (Technical University)

Email: vvkuznetsov@inbox.ru
Russian Federation, Saint Petersburg, 190013

V. A. Keskinov

East Kazakhstan State Technical University

Email: vvkuznetsov@inbox.ru
Kazakhstan, Ust-Kamenogorsk, 070000

N. A. Kulenova

East Kazakhstan State Technical University

Email: vvkuznetsov@inbox.ru
Kazakhstan, Ust-Kamenogorsk, 070000

K. N. Semenov

Pavlov Saint Petersburg State University

Email: vvkuznetsov@inbox.ru
Russian Federation, Saint Petersburg, 197022

M. V. Charykova

Saint Petersburg State University

Email: vvkuznetsov@inbox.ru
Russian Federation, Saint Petersburg, 197022

V. P. German

Saint Petersburg State Technological Institute (Technical University)

Email: vvkuznetsov@inbox.ru
Russian Federation, Saint Petersburg, 190013

References

  1. Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем. Т. 1. Трехкомпонентные системы / Под ред. Пельша А.Д. Л.: Химия, 1973. 1069 с.
  2. Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем. Т. 2. Четырехкомпонентные и более сложные системы / Под ред. Пельша А.Д. Л.: Химия, 1975. 1063 с.
  3. Коган В.Б. и др. Справочник по растворимости. В 3-х томах. М.–Л.: Изд-во АН СССР, 1961–1970. Т. 1. 1960 с. Т. 2. 2066 с. Т. 3. 1219 с.
  4. Crocer L.S., Varsolon R.J., Mc-Colli J.A. // J. Pharm. Biomed. Anal. 1997. V. 15. № 11. P. 1661. https://doi.org/10.1016/s0731-7085(96)01941-3
  5. Hollmann R. // R.Z. Phys. Chem. (Leipzig). 1901. V. 37. P. 193.
  6. Тамман Г. Руководство по гетерогенным равновесиям. Л.: ОНТИ, Химтеорет, 1935. 590 с.
  7. Rumyantsev A.V., Charykov N.A., Puchkov L.V. // Russ. J. Phys. Chem. A. 1998. V. 72. № 6. P. 870.
  8. Сторонкин А.В. Термодинамика гетерогенных систем. Л.: Изд-во ЛГУ, 1967. Ч. 1, 2. 467 с.
  9. Чарыкова М.В., Чарыков Н.А. Термодинамическое моделирование процессов эвапоритовой седиментации. СПб.: Наука, 2003. 279 с. ISBN: 5-02-024989-0
  10. Филиппов В.К., Соколов В.А. // Термодинамика гетерогенных систем и теория поверхностных явлений. Л.: ЛГУ, 1988. Т. 8. С. 3.
  11. Korjinskiy A.D. Theoretical basis of the analysis of minerals paragenesis. M.: Nauka, 1973. 670 p.
  12. Чарыков Н.А., Литвак А.М., Михайлова М.П. и др. // Физика и техника полупроводников. 1997. Т. 31. С. 410.
  13. Baranov A.N., Dzhurtanov B.E., Litvak A.M. et al. // Russ J. Inorg. Chem. 1990. V. 35. № 5. P. 1020.
  14. Baranov A.N., Djurtanov A.A., Litvak A.M. et al. // Russ. J. Inorg. Chem. 1990. V. 35. № 12. P. 3008.
  15. Brunisholz G., Nozari M. // Helv. Chim. Acta. 1969. V. 52. № 8. P. 2303. https://doi.org/10.1002/hlca.19690520812
  16. Gmelin Handbuch der anorganischen Chemie. Berlin: Springer-Verlag., 1975.
  17. Справочник. Диаграммы состояния систем тугоплавких оксидов / Под ред. Галахова Ф.Я. Л.: Наука, 1985–1991. Вып. I–V.
  18. Байрамова У.Р., Бабанлы К.Н., Машалиева Л.Ф. и др. // Журн. неорган. химии. 2023. Т. 68. С. 1614. https://doi.org/10.31857/S0044457X23600792
  19. Reardon E.J. // J. Phys. Chem. 1989. V. 93. P. 4630.
  20. Vielma T. // CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2021. V. 72. P. 102230. https:// doi.org/10.1016/j.calphad.2020.102230
  21. Arapov O.V., Aksel’rod B.M., Pronkin A.A. et al. // Russ. J. Appl. Chem. 2003. V. 76. № 1. P. 33.
  22. Майстер И.М., Лопато Л.М., Шевченко А.В. и др. // Изв. АН СССР. Неорган. материалы. 1984. Т. 20. № 3. С. 446.
  23. Coutures J., Rouanet A., Verges L. et al. // J. Solid State Chem. 1976. V. 17. P. 171.
  24. Coutures J., Sibieude F., Foes M. // J. Solid State Chem. 1976. V. 17. P. 377.
  25. Tueta R., Lejua A.-M. // Rev. Chim. Miner. 1974. V. 11. P. 27.
  26. Вопросы физической химии растворов электролитов / Под ред. Микулина Г.И. Л.: Химия, 1968. 420 с.
  27. Кескинов В.А., Чарыков Н.А., Блохин А.А. и др. Пат. РФ. № 2 550 891. Опубл. 20.05.2015.
  28. Ibragimova R., Afanasenko V., Kudryavtsev G. et al. // MATEC Web of Conferences. 2019. V. 298. P. 00070. https://doi.org/10.1051/matecconf/201929800070
  29. Лебедев А.Е., Гуданов И.C., Власов В.В. и др. Ректификационная колонна. Пат. РФ. RU2792004C1. Опубл. 15.03.2023.
  30. Müller M., Becker T., Gastl M. // Foods. 2021. V. 10. P. 1602. https://doi.org/10.3390/foods10071602
  31. Korotkova T.G., Kas’yanov G.I. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 1051. https://doi.org/10.1134/s0036024421050186
  32. Hongshen Li, Hongrui Liu, Yufang Li et al. // Energies. 2021. V. 14. P. 2266. https://doi.org/10.3390/en14082266
  33. Volynets D.A., Chernyshova E.A., Tarasov A.V. // World of petroleum products. 2021. V. 5. P. 50. https://doi.org/10.32758/2782-3040-2021-0-5-50-53
  34. Golovanchikov A.B., Prokhorenko N.A. // Oil Gas Technol. 2021. V. 135. № 4. P. 46. https://doi.org/10.32935/1815-2600-2021-135-4-46-49
  35. Khvostov A.A., Ivanov A.V., Zhuravlev A.A. // Mathematical Methods in Technologies and Technics. 2021. V. 2. P. 16. https://doi.org/10.52348/2712-8873_mmtt_
  36. Korzenszky P., Barátossy G., Székely L. et al. // Potravinarstvo Slovak J. Food Sci. 2020. V. 14. P. 1191. https://doi.org/10.5219/1472
  37. Пэн Дэцян, Ци Хуэминь, Ван Луяо и др. Пат. РФ RU 2 683 757. Опубл. 01.04.2019. 38. Myasoyedenkov V.M., Shapanbayev B.N. // Fine Chemical Technologies. 2014. V. 9. № 4. P. 34.
  38. Van der Ham F., Seckler M., Witkamp G. // Chem. Eng. Process. 2004. V. 43. P. 161. https://doi.org/10.1016/S0255-2701(03)00018-7
  39. Sharma AQ., Sandhu S., Kumar V. // Adv. Mater. Res. 2021. V. 1. P. 93. https://doi.org/10.4028/www.scientific.net/amr.1160.93
  40. Guo G., Liu G. // Material Design Process. Commun. 2019. V. 2. P. 3484. https://doi.org/10.1002/mdp2.117

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Desolvation diagrams of ideal solid solutions on the example of ternary systems PrxNd1 - xCl3 - 6H2O - PrxNd1 - xCl3 - 7H2O - H2O (left) and NixCo1 - xSO4 - 6H2O - NixCo1 - xSO4 - 7H2O - H2O (right) at 25°C. The red colour represents the dependence of the partial pressure of the solvent over saturated liquid solutions (on the solubility diagrams of the corresponding systems).

Download (39KB)
3. Fig. 2. Desolvation diagrams of non-ideal (regular) solid solutions on the example of ternary systems NaClxBr1 - x - NaClxBr1 - x - 2H2O - H2O (left) and (C60)x(C70)1 - x - (C60)x(C70)1 - x - 2o-C6H4(CH3)2 - o-C6H4(CH3)2 (right) at 25°C (black lines - calculation of solid solution desolvation diagrams). Red colour represents the dependence of the partial pressure of the solvent over saturated liquid solutions (on the solubility diagrams of the corresponding systems).

Download (39KB)
4. Fig. 3. Evolution of solid solution desolvation phase diagrams under the condition that the solvated solid solution is regular and the desolvated solid solution is ideal (black lines - calculation of solid solution desolvation diagrams). W1 is the reduced parameter of the regular solution model.

Download (10KB)
5. Fig. 4. Diagrams of polymorphic transformations of solid solutions in the systems (YXEu1 - X)2O3 (left) and (LaXNd1 - X)2O3 (right) (black lines on the equilibria of polymorphic modifications of solid solutions - experimental data of [30-33]).

Download (8KB)
6. Fig. 5. Scheme of the processes of salt components separation during solvation-desolvation of solid solutions at increasing-decreasing partial pressure of solvent vapour (blue colour represents compositions of solvated solution, red colour - compositions of desolvated solution (q1 > q2)).

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences