“DIIMINE-NiII-CATECHOLATE” CHROMOPHORES BASED ON PHENANTHROLINE- TYPE LIGAND SYSTEMS: MOLECULAR STRUCTURE, “LIGAND-TO-LIGAND” CHARGE TRANSFER, AND THERMAL BEHAVIOR
- 作者: Pashanova K.I.1, Yakushev I.A.2, Lazarev N.M.1, Zolotukhin A.A.1, Kovylina T.A.1, Klimashevskaya A.V.1, Arsenyev М.V.1, Sulimova O.V.2, Dorovatovskii P.V.3, Piskunov A.V.1
-
隶属关系:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research Centre “Kurchatov Institute”
- 期: 卷 69, 编号 11 (2024)
- 页面: 2199-2216
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/676613
- DOI: https://doi.org/10.31857/S0044457X24110053
- EDN: https://elibrary.ru/JMBCVV
- ID: 676613
如何引用文章
详细
作者简介
K. Pashanova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: pashanova@iomc.ras.ru
Nizhny Novgorod, Russia
I. Yakushev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
N. Lazarev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
A. Zolotukhin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
T. Kovylina
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
A. Klimashevskaya
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
М. Arsenyev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
O. Sulimova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
P. Dorovatovskii
National Research Centre “Kurchatov Institute”Moscow, Russia
A. Piskunov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny Novgorod, Russia
参考
- Weil T., Vosch T., Hofkens J. et al. // Angew. Chem. Int. Ed. 2010. V. 49.№48. P. 9068. https://doi.org/10.1002/anie.200902532
- Christiansen P.L., Sorensen M.P., Scott A.C. Nonlinear Science at the Dawn of the 21st Century. Berlin: Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0_9
- Mitschke F. Fiber optics. Berlin: Springer Berlin, 2016. https://doi.org/10.1007/978-3-662-52764-1
- Curreli S., Deplano P., Faulmann C. et al. // Inorg. Chem. 2004. V. 43.№16. P. 5069. https://doi.org/10.1021/ic0496469
- Resch-Genger U., Grabolle M., Cavaliere-Jaricot S. et al. // Nat. Methods. 2008. V. 5. P. 763. https://doi.org/10.1038/nmeth.1248
- Yam V.W.-W., Au V.K.-M., Leung S.Y.-L. // Chem. Rev. 2015. V. 115.№15. P. 7589. https://doi.org/10.1021/acs.chemrev.5b00074
- Baggaley E., Weinstein J.A., Williams J.G. // Coord. Chem. Rev. 2012. V. 256.№15–16. P. 1762. https://doi.org/10.1016/j.ccr.2012.03.018
- Baise A., Teucher I., Labes M. // Appl. Phys. Lett. 1972. V. 21. P. 142. https://doi.org/10.1063/1.1654317
- Krebs P., Sackmann E., Schwarz J. // Chem. Phys. Lett. 1971. V. 8.№5. P. 417. https://doi.org/10.1016/0009-2614(71)80416-5
- Reinders A., Verlinden P., Van Sark W. et al. Photovoltaic Solar Energy. From Fundamentals to Applications. Hoboken: John Wiley & Sons, 2017.
- Giribabu L., Kanaparthi R.K., Velkannan V. // TCR. 2012. V. 12.№3. P. 306. https://doi.org/10.1002/tcr.201100044
- Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
- Tyagi V., Rahim N.A.A., Rahim N.A. et al. // Renew. Sustain. Energy Rev. 2013. V. 20. P. 443. https://doi.org/10.1016/j.rser.2012.09.028
- Смирнова Е.А., Беседина М.А., Карушев М.П. // Журн. физ. химии. 2016. Т. 90.№5. С. 808.
- Ward M.D. // J. Solid State Electrochem. 2005. V. 9. P. 778. https://doi.org/10.1007/s10008-005-0668-4
- Bange K., Gambke T. // Adv. Mater. 1990. V. 2.№1. P. 10. https://doi.org/10.1002/adma.19900020103
- Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147. https://doi.org/10.1039/CS9972600147
- Nejad M.A.F., Ranjbar S., Parolo C. et al. // Mater. Today. 2021. V. 50. P. 476. https://doi.org/10.1016/j.mattod.2021.06.015
- Griffiths J. Colour and Constitution of Organic Molecules. Cambridge: Acad. Press, 1976.
- Griffiths J. // Color. Technol. 1981. V. 11.№1. P. 37. https://doi.org/10.1111/j.1478-4408.1981.tb03714.x
- Waring D.R., Hallas G. The Chemistry and Application of Dyes. Boston: Springer, 1990.
- Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53.№16. P. 8825. https://doi.org/10.1021/ic5017214
- Bubnov M.P., Teplova I.A., Druzhkov N.O. et al. // Chem. Sci. J. 2015. V. 127. P. 527. https://doi.org/10.1007/s12039-015-0805-2
- Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26.№15. P. 4622. https://doi.org/10.3390/molecules26154622
- Pashanova K.I., Ershova I.V., Trofimova O.Yu. et al. // Molecules. 2022. V. 27.№23. P. 8175. https://doi.org/10.3390/molecules27238175
- Pashanova K.I., Ershova I.V., Yakushev I.A. et al. // Polyhedron. 2023. V. 243. P. 116527. https://doi.org/10.1016/j.poly.2023.116527
- Cameron L.A., Ziller J.W., Heyduk A.F. // Chem. Sci. 2016. V. 7. P. 1807. https://doi.org/10.1039/C5SC02703A
- Yamada S., Matsumoto T., Chang H.-C. // Chem. Eur. J. 2019. V. 25.№35. P. 8268. https://doi.org/10.1002/chem.201900172
- Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61.№4. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
- BaniKhaled M.O., Becker J.D., Koppang M. et al. // Cryst. Growth Des. 2016. V. 16.№4. P. 1869. https://doi.org/10.1021/acs.cgd.5b01291
- Deibel N., Schweinfurth D., Fiedler J. et al. // Dalton Trans. 2011. V. 40.№38. P. 9925. https://doi.org/10.1039/C1DT10856E
- Ghosh P., Begum A., Herebian D. et al. // Angew. Chem. Int. Ed. 2003. V. 42.№5. P. 563. https://doi.org/10.1002/anie.200390162
- Tahara K., Ashihara Y., Higashino T. et al. // Dalton Trans. 2019. V. 48.№28. P. 7367. https://doi.org/10.1039/C8DT05057K
- Archer S., Weinstein J.A. // Coord. Chem. Rev. 2012. V. 256.№21–22. P. 2530. https://doi.org/10.1016/j.ccr.2012.07.010
- Sobottka S., No.ler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26.№6. P. 1314. https://doi.org/10.1002/chem.201903700
- Brown D.G., Hughes W.J. // Z. Naturforsch B. 1979. V. 34.№10. P. 1408. https://doi.org/10.1515/znb-1979-1012
- Brown D.G., Hughes W.J., Knerr G. // Inorg. Chim. Acta. 1980. V. 46. P. 123. https://doi.org/10.1016/S0020-1693(00)84179-1
- Brown D.G., Reinprecht J.T., Vogel G.C. // Inorg. Nucl. Chem. Lett. 1976. V. 12.№5. P. 399. https://doi.org/10.1016/0020-1650(76)80050-5
- Buchanan R.M., Wilson-Blumenberg C., Trapp C. et al. // Inorg. Chem. 1986. V. 25.№17. P. 3070. https://doi.org/10.1021/ic00237a029
- Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154.
- Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376.№1. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
- Davis C.C., Murphy T.E. // IEEE Signal Process. Mag. 2011. V. 28. P. 147. https://doi.org/10.1109/MSP.2011.941096
- Tahara K., Kadowaki T., Kikuchi J.-I. et al. // BCSJ. 2018. V. 91.№11. P. 1630. https://doi.org/10.1246/bcsj.20180187
- Pashanova K.I., Lazarev N.M., Zolotukhin A.A. et al. // ChemistrySelect 2024. V. 9. № 15. P. e202304536. https://doi.org/10.1002/slct.202304536
- Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. C. 202.
- Fukin G.K., Cherkasov A.V., Shurygina M.P. et al. // Struct. Chem. 2010. V. 21. P. 607. https://doi.org/10.1007/s11224-010-9590-1
- van der Tol E.B., van Ramesdonk H.J., Verhoeven J.W. et al. // Chem. Eur. J. 1998. V. 4. № 11. P. 2315. 3.0.CO;2-E
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
- Bruker. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Аppl. Сrystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Kabsch W. // Acta Crystallogr., Sect. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. P. 3. https://doi.org/10.1107/ S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/ S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Лебедев Ю.А., Мирошниченко Е.А. Термохимия парообразования органических веществ. М.: Наука, 1981.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Revision D.01. Gaussian, Inc. Wallingford CT. 2013.
- O’Boyle N.M., Tenderholt A.L., Langner K.M. // J. Comput. Chem. 2008. V. 29.№5. P. 839. https://doi.org/10.1002/jcc.20823
- Laurent A.D., Jacquemin D. // Int. J. Quant. Chem. 2013. V. 113.№17. P. 2019. https://doi.org/10.1002/qua.24438
- Poddel’sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253.№3-4. P. 291. https://doi.org/10.1016/j.ccr.2008.02.004
- Alkhatib Q., Helal W., Marashdeh A. // RSC Аdv. 2022. V. 12. P. 1704. https://doi.org/10.1039/D1RA08795A
- Малеева А.В., Трофимова О.Ю., Якушев И.А. // Коорд. химия. 2023. Т. 49.№7. С. 412.
- Арсеньева К.В., Климашевская А.В., Арсеньев М.В. // Изв. АН. Сер. хим. 2024. Т. 72. № 1. С. 117.
- Pashanova K.I., Lazarev N.M., Kukinov A.A. et al. // ChemistrySelect. 2022. V. 7.№10. P. 202104477. https://doi.org/10.1002/slct.202104477
- Лебедев А.Т. Масс-спектрометрия в органической химии. М.: Бином, 2015.
补充文件
