Synthesis, Optical and Electrical Properties of High-Entropy Niobate (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6 with Columbite Structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high-entropy niobate (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6 with a columbite structure was synthesized for the first time. A modified method of combustion solutions followed by high-temperature sintering was used. According to the diffuse reflectance spectra, the band gap of the direct electronic transition is 3.36 eV. Mixed electronic-ionic conductivity was determined. The total conductivity of the sample is 2.5 · 10–3 S/cm at 750°C and is comparable to Mg0.8Cu0.2Nb2O6.

Full Text

Restricted Access

About the authors

M. S. Koroleva

Institute of Chemistry of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: marikorolevas@gmail.com
Russian Federation, Syktyvkar, 167000

V. S. Maksimov

Institute of Chemistry of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences; Pitirim Sorokin Syktyvkar State University

Email: marikorolevas@gmail.com
Russian Federation, Syktyvkar, 167000; Syktyvkar, 167005

I. V. Piir

Institute of Chemistry of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences

Email: marikorolevas@gmail.com
Russian Federation, Syktyvkar, 167000

References

  1. Bérardan D., Franger S., Meena A.K. et al. // J. Mater. Chem. A. 2016. V. 4. P. 9536. https://doi.org/10.1039/c6ta03249d
  2. Li F., Zhou L., Liu J.X. et al. // J. Adv. Ceram. 2019. V. 8. P. 576. https://doi.org/10.1007/s40145-019-0342-4
  3. Feng C., Zhou Y., Chen M. et al. // Appl. Catal., B: Environ. Energy. 2024. V. 349. P. 123875. https://doi.org/10.1016/j.apcatb.2024.123875
  4. Zhou L., Li F., Liu J.X. et al. // J. Hazard. Mater. 2021. V. 415. P. 125596. https://doi.org/10.1016/j.jhazmat.2021.125596
  5. Sarkar A., Wang Q., Schiele A. et al. // Adv. Mater. 2019. V. 31. P. 1806236. https://doi.org/10.1002/adma.201806236
  6. Xu Y., Xu X., Bi L. // J. Adv. Ceram. 2022. V. 11. P. 794. https://doi.org/10.1007/s40145-022-0573-7
  7. Koroleva M.S., Krasnov A.G., Piir I.V. // Ceram. Int. 2023. V. 49. P. 28764. https://doi.org/10.1016/j.ceramint.2023.06.136
  8. Wang Z., Zhou L., Liu C. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2024. V. 549. P. 165285. https://doi.org/10.1016/j.nimb.2024.165285
  9. Xu L., Niu M., Su L. et al. // Corros. Sci. 2024. V. 227. P. 111682. https://doi.org/10.1016/j.corsci.2023.111682
  10. Li Z., Ge Y., Xiao Y. et al. // J. Alloys Compd. 2024. V. 989. P. 174357. https://doi.org/10.1016/j.jallcom.2024.174357
  11. Shannon R.D. // Acta Crystallogr., Sect. А. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  12. Priyadarshani N., Vinitha G., Sabari Girisun T.C. // Opt. Laser Technol. 2018. V. 108. P. 287. https://doi.org/10.1016/j.optlastec.2018.06.040
  13. Kamimura S., Abe S., Tsubota T. et al. // J. Photochem. Photobiol., A: Chem. 2018. V. 356. P. 263. https://doi.org/10.1016/j.jphotochem.2017.12.039
  14. Wichmann Von R., Müller-Buschbaum Hk. // Z. Anorg. Allg. Chem. 1983. V. 503. P. 101. https://doi.org/10.1002/zaac.19835030810
  15. Ma R., Cao F., Wang J. et al. // Mater. Lett. 2011. V. 65. P. 2880. https://doi.org/10.1016/j.matlet.2011.06.084
  16. Lee H.J., Hong K.S., Kim S.J. et al. // Mater. Res. Bull. 1997. V. 32. P. 847. https://doi.org/10.1016/S0025-5408(97)00034-2
  17. Belous A., Ovchar O., Jancar B. et al. // J. Electrochem. Soc. 2009. V. 156. P. G206. https://doi.org/10.1149/1.3236661
  18. Prabhakaran D., Wondre F.R., Boothroyd A.T. // J. Cryst. Growth. 2003. V. 250. P. 72. https://doi.org/10.1016/S0022-0248(02)02229-7
  19. Yamamura H., Nishino H., Kakinuma K. et al. // J. Ceram. Soc. Jpn. 2003. V. 111. P. 902. https://doi.org/10.2109/jcersj.111.902
  20. Orera A., García-Alvarado F., Irvine J.T.S. // Chem. Mater. 2007. V. 19. P. 2310. https://doi.org/10.1021/cm062856u
  21. Zhang H., Zhang X., Li H. et al. // J. Colloid Interface Sci. 2021. V. 583. P. 652. https://doi.org/10.1016/j.jcis.2020.09.076
  22. Zhang Y.C., Wang J., Yue Z.X. et al. // Ceram. Int. 2004. V. 30. P. 87. https://doi.org/10.1016/S0272-8842(03)00068-3
  23. Butee S., Kulkarni A., Prakash O. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1047. https://doi.org/10.1111/j.1551-2916.2009.02955.x
  24. Wachtel A. // J. Electrochem. Soc. 1964. V. 111. P. 534. https://doi.org/10.1149/1.2426176
  25. Liu F., Wang Y., Wang B. // Sens. Actuators, B: Chem. 2017. V. 238. P. 1024. https://doi.org/10.1016/j.snb.2016.07.145
  26. Sheng N., Han C.-G., Zhu C., Akiyama T. // Ceram. Int. 2018. V. 44. P. 18279. https://doi.org/10.1016/j.ceramint.2018.07.039
  27. Pullar R.C., Breeze J.D., Alford N.M.N. // J. Am. Ceram. Soc. 2005. V. 88. P. 2466. https://doi.org/10.1111/j.1551-2916.2005.00458.x
  28. Pullar R.C. // J. Am. Ceram. Soc. 2009. V. 92. P. 563. https://doi.org/10.1111/j.1551-2916.2008.02919.x
  29. Morkhova Y.A., Koroleva M.S., Egorova A.V. et al. // J. Phys. Chem. С. 2023. V. 127. P. 52. https://doi.org/10.1021/acs.jpcc.2c06631
  30. Morkhova Y.A., Koroleva M.S., Egorova A.V. et al. // ECS Adv. 2024. V. 3. P. 024504. http://iopscience.iop.org/article/10.1149/2754-2734/ad3f31
  31. Huang X., Jing Y., Yang J. et al. // Mater. Res. Bull. 2014. V. 51. P. 271. https://doi.org/10.1016/j.materresbull.2013.12.033
  32. Balamurugan C., Maheswari A.R., Lee D.W. // Sens. Actuators, B: Chem. 2014. V. 205. P. 289. https://doi.org/10.1016/j.snb.2014.08.076
  33. Naveed-Ul-Haq M., Gul-e-Ali // Mater. Today Commun. 2023. V. 37. P. 107075. https://doi.org/10.1016/j.mtcomm.2023.107075
  34. Kormányos A., Thomas A., Huda M.N. // J. Phys. Chem. С. 2016. V. 120. P. 16024. https://doi.org/10.1021/acs.jpcc.5b12738

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental, calculated X-ray diffraction patterns and their difference profile for (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6.

Download (229KB)
3. Fig. 2. Micrograph of the ground surface of high-entropy ceramic (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6 in the elastically reflected electron mode.

Download (112KB)
4. Fig. 3. Absorption spectra and Tautz dependences for direct and indirect allowed electronic transitions (insets) for (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6.

Download (183KB)
5. Fig. 4. Impedance spectra of (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6 at 25 (a) and 280°C (b) in air.

Download (126KB)
6. Fig. 5. DC reverse temperature dependence of conductivity in air (shaded icons) and oxygen (empty icons) for (Mg0.2Cu0.2Ni0.2Co0.2Zn0.2)Nb2O6 versus substituted columbites Mg1-xCuxNb2O6 [29].

Download (278KB)

Copyright (c) 2024 Russian Academy of Sciences