SYNTHESIS AND STUDY OF SUBMICRON BARIUM HEXAFERRITE CERAMICS OBTAINED BY LIQUID-PHASELOW-TEMPERATURE SINTERING OF BaFe12O19 NANOPARTICLES
- Authors: Mironovich A.Y.1, Kostishyn V.G.1, Al-Khafaji H.I.1, Timofeev A.V.1, Savchenko E.S.1, Ril A.I.2
-
Affiliations:
- National University of Science & Technology “MISIS”
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 11 (2024)
- Pages: 2187-2198
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/676610
- DOI: https://doi.org/10.31857/S0044457X24110042
- EDN: https://elibrary.ru/JMMQUJ
- ID: 676610
Cite item
Abstract
About the authors
A. Yu. Mironovich
National University of Science & Technology “MISIS”
Email: amironovich24@gmail.ru
Moscow, Russia
V. G. Kostishyn
National University of Science & Technology “MISIS”Moscow, Russia
H. I. Al-Khafaji
National University of Science & Technology “MISIS”Moscow, Russia
A. V. Timofeev
National University of Science & Technology “MISIS”Moscow, Russia
E. S. Savchenko
National University of Science & Technology “MISIS”Moscow, Russia
A. I. Ril
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
References
- Granados-Miralles C., Saura-Muzquiz M., Andersen H.L. Permanent Magnets Based on Hard Ferrite Ceramics. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002234.
- Cui J., Ormerod J., Parker D. et al. // JOM.2022.V. 74. P. 1279. https://doi.org/10.1007/s11837-022-05156-9
- de Julian Fernandez C., Sangregorio C., de la Figuera J. et al. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 153001. https://doi.org/10.1088/1361-6463/abd272
- Коровушкин B.B., Труханов A.B., Шипко M.H. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 463. https://doi.org/10.1134/S0044457X19050118
- Костишин В.Г., Коровушкин В.В., Исаев И.М. и др. // ФТТ. 2021. Т. 63.№2. С. 229. https://doi.org/10.21883/FTT.2021.02.50468.187
- Костишин В.Г., Коровушкин В.В., Похолок К.В. и др. // ФТТ. 2021. Т. 63.№2. С. 229. https://doi.org/10.21883/FTT.2021.10.51396.126
- Костишин В.Г., Андреев В.Г., Читанов Д.Н. и др. // Журн. неорган. химии. 2016. Т. 61.№3. С. 294. https://doi.org/10.7868/S0044457X16030119
- Yao Y., Hrekau I.A, Tishkevich D.I. et al. // Ceram. Int. 2023. V. 49.№22. P. 37009. https://doi.org/10.1016/j.ceramint.2023.09.033
- Zhivulin V.E., Trofimov E.A., Zaitseva O.V. et al. // Ceram. Int. 2023. V. 49.№1. P. 1069. https://doi.org/10.1016/j.ceramint.2022.09.082
- Ali I., Islam M.U., Awan M.S. et al. // J. Alloys Compd. 2013. V. 550. P. 564. https://doi.org/10.1016/j.jallcom.2012.10.121
- Awadallah A., Mahmood S.H., Maswadeh Y. et al. // Mater. Res. Bull. 2016. V. 74. P. 192. https://doi.org/10.1016/j.materresbull.2015.10.034
- Ounnunkad S. // Solid State Commun. 2006. V. 138. №9. P. 472. https://doi.org/10.1016/j.ssc.2006.03.020
- You J.Y., Lee K.H., Kang Y.M., Yoo S.I. // Appl. Sci. 2022. V. 12.№23. P. 12295. https://doi.org/10.3390/app122312295
- Song F., Shen X., Liu M., Xiang J. // J. Colloid Interface Sci. 2011. V. 354.№1. P. 413. https://doi.org/10.1016/j.jcis.2010.11.020
- Saeedi Afshar S.R., Masoudpanah S.M., Hasheminiasari M. // J. Electron. Mater. 2020. V. 49. P. 1742. https://doi.org/10.1007/s11664-020-07943-z
- Volodchenkov A.D., Kodera Y., Garay J.E. // J. Mater. Sci. 2019. V. 54. P. 8276. https://doi.org/10.1007/s10853-019-03323-z
- Cullity B.D., Graham C.D. Domains and the magnetization process. Wiley, 2009. https://doi.org/10.1002/9780470386323.ch9
- Kubo O., Ido T., Yokoyama H., Koike Y. // J. Appl. Phys. 1985. V. 57.№8. P. 4280. https://doi.org/10.1063/1.334585
- Dho J., Lee E.K., Park J.Y., Hur N.H. // J. Magn. Magn. Mater. 2005. V. 285.№1–2. P. 164. https://doi.org/10.1016/j.jmmm.2004.07.033
- Соловьева Е.Д., Пашкова Е.В., Белоус А.Г. // Неорган. материалы. 2011. Т. 47.№11. С. 1378. https://doi.org/10.1134/S0020168511100207
- Mozaffari M., Taheri M., Amighian J. // J. Magn. Magn. Mater. 2009. V. 321.№9. P. 1285. https://doi.org/10.1016/j.jmmm.2008.11.106
- Mironovich A.Y., Kostishin V.G., Al-Khafaji H.I. et al. // Materialia. 2023. V. 32. P. 101898. https://doi.org/10.1016/j.mtla.2023.101898
- Jing Y., Jia L., Zheng Y., Zhang H. // RSC Adv. 2019. V. 9.№57. P. 33388. https://doi.org/10.1039/C9RA06246G
- Davoodi A., Hashemi B. // J. Alloys Compd. 2011. V. 509.№19. P. 5893. https://doi.org/10.1016/j.jallcom.2011.03.002
- Rahman M.L., Rahman S., Biswas B. et al. // Helyon. 2023. V. 9.№3. P. e14532. https://doi.org/10.1016/j.heliyon.2023.e14532
- Паньков В.В. // Неорган. материалы. 2004. Т. 40. №9. С. 1118. https://doi.org/10.1023/B:INMA.0000041333.79255.1f
- Kazin P.E., Trusov L.A., Zaitsev D.D., Tret’yakov Y.D. // Russ. J. Inorg. Chem. 2009. V. 54.№14. P. 2081. https://doi.org/10.1134/ S0036023609140010
- Shakirzyanov R.I., Volodina N.O., Kadyrzhanov K.K. et al. // Materials. 2023. V. 16.№14. P. 5018. https://doi.org/10.3390/ma16145018
- Santos A.C., Ribeiro S. // Ceram. Int. 2018. V. 44. №10. P. 11048. https://doi.org/10.1016/j.ceramint.2018.03.083
- Noi K., Suzuki K., Tanibata N. et al. // J. Am. Ceram. Soc. 2018. V. 101.№3. P. 1255. https://doi.org/10.1111/jace.15288.
- Cho W.W., Kakimoto K., Ohsato H. // Mater. Sci. Eng. B. 2005. V. 121.№1–2. P. 48. https://doi.org/10.1016/j.mseb.2005.02.061
- Shi Z., Gao F., Zhu J. et al. // J. Materiomics. 2019. V. 5.№4. P. 711. https://doi.org/10.1016/j.jmat.2019.04.007
- Molaverdi F., Sarraf-Mamoory R., Yourdkhani A. et al. // J. Mater. Sci.: Mater. Electron. 2022. V. 33. №25. P. 20194. https://doi.org/10.1007/s10854-022-08838-x
- Chen L., Li J., Tu X. et al. // J. Mater. Sci.: Mater. Electron. 2022. V. 33. P. 20162. https://doi.org/10.1007/s10854-022-08835-0
- Biswas M., An H., Choi S.M. et al. // Ceram. Int. 2016. V. 42.№8. P. 10476. https://doi.org/10.1016/j.ceramint.2016.03.038
- Sebastian M.T., Jantunen H. // Int. Mater. Rev. 2008. V. 53.№2. P. 57. https://doi.org/10.1179/174328008X277524
- Dai Y., Lan Z., Yu Z. et al. // J. Magn. Magn. Mater. 2021. V. 540. P. 168443. https://doi.org/10.1016/j.jmmm.2021.168443
- Sozeri H., Baykal A., Unal B. // Phys. Status Solidi. 2012. V. 209.№10. P. 2002. https://doi.org/10.1002/pssa.201228023
- Mehmedi Z., Sozeri H., Topal U., Baykal A. // J. Supercond. Nov. Magn. 2015. V. 28. P. 1395. https://doi.org/10.1007/ s10948-014-2865-9
- Wang X., Zhang H., Shi L. et al. // J. Alloys Compd. 2022. V. 899. P. 163146. https://doi.org/10.1016/j.jallcom.2021.163146
- Vidyawathi S.S., Amaresh R., Satapathy L.N. // Bull. Mater. Sci. 2002. V. 25. P. 569. https://doi.org/10.1007/BF02710553
- Mironovich A.Y., Kostishin V.G., Shakirzyanov R.I. et al. // J. Solid State Chem. 2022. V. 316. P. 23625. https://doi.org/10.1016/j.jssc.2022.123625.
- Huber C., Jahromy S.S., Birkelbach F. et al. // Energy Sci. Eng. 2020. V. 8.№5. P. 1650. https://doi.org/10.1002/ese3.622
- Levin E.M., Roth R.S. // J. Res. Natl. Bur. Stand. 1964. V. 68.№2. P. 189. https://doi.org/10.6028/jres.068A.019
- Doebelin N., Kleeberg R. // J. Appl. Crystallogr. 2015. V. 48.№5. P. 1573. https://doi.org/10.1107/S1600576715014685
- Zhao L., Lv X.,Wei Y. et al. // J. Magn. Magn. Mater. 2013. V. 332. P. 44. https://doi.org/10.1016/j.jmmm.2012.11.056
- Soria G.D., Jenus P., Marco J.F. et al. // Sci. Rep. 2019. V. 9.№1. P. 11777. https://doi.org/10.1038/s41598-019-48010-w
- Saura-Muzquiz M., Eikeland A.Z., Stingaciu M. et al. // Nanoscale. 2020. V. 12.№17. P. 9481. https://doi.org/10.1039/D0NR01728K
- Винник Д.А. Физико-химические основы получения монокристаллических материалов на основе гексагональных ферритов для применения в электронике сверхвысоких частот. Дис. . . . канд. хим. наук. Челябинск, 2017.
- Topal U. // Mater. Sci. Eng. B. 2011. V. 176. № 18. P. 1531. https://doi.org/10.1016/j.mseb.2011.09.019
- Канева И.И., Костишин В.Г., Андреев В.Г. и др. // Известия высших учебных заведений. Материалы электронной техники. 2015.№3. С.183.
- Горбачев Е.А., Козлякова Е.С., Трусов Л.А. и др. // Успехи химии. 2021. Т. 90.№10. С. 1287.
- Thongmee S.,Winotai P., Tang I.M. // Sci. Asia. 2003. V. 29. P. 51. https://doi.org/10.2306/scienceasia1513-1874.2003.29.051
- Winotai P., Thongmee S., Tangab I.M. // Mater. Res. Bull. 2000. V. 35.№11. P. 1747. https://doi.org/10.1016/S0025-5408(00)00382-2
- Waroquiers D., Gonze X., Rignanese G.M. et al. // Chem. Mater. 2017. V. 29.№19. P. 8346. https://doi.org/10.1021/acs.chemmater.7b02766
- Shannon R.T., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25.№5. P. 925. https://doi.org/10.1107/S0567740869003220
- Sehar F., Anjum S., Mustafa Z., Atiq S. // J. Supercond. Nov. Magn. 2020. V. 33. P. 2073. https://doi.org/10.1007/s10948-020-05452-y
- Basma H., Rahal H.T., Awad R. // J. Magn. Magn. Mater. 2021. V. 539. P. 168413. https://doi.org/10.1016/j.jmmm.2021.168413
- Bai Y., Zhou J., Gui Z. et al. // J. Alloys Compd. 2008. V. 450.№1–2. P. 412. https://doi.org/10.1016/j.jallcom.2006.10.122
- Shakoor S., Ashiq M.N., Malana M.A. et al. // J. Magn. Magn. Mater. 2014. V. 362. P. 110. https://doi.org/10.1016/j.jmmm.2014.03.038
- Pal M., Brahma P., Chakravorty D., Agrawal D.C. // J. Magn. Magn. Mater. 1995. V. 147.№1–2. P. 08. https://doi.org/10.1016/0304-8853(95)00061-5
- Venkataraju C., Satishkumar G., Sivakumar K. // J. Mater. Sci.: Mater. Electron. 2012. V. 23. P. 1163. https://doi.org/10.1007/s10854-011-0565-9
- Sanchez-De J.F., Bolarn-Miro A.M., Cortes-Escobedo C.A. et al. // Ceram. Int. 2014. V. 40.№3. P. 4033. https://doi.org/10.1016/j.ceramint.2013.08.056
Supplementary files
