New Method for the Synthesis of Acetylacetone-Based Closo-Borate Anion Derivatives [BnHn–1NH=C(R)C(C(OH)CH3)C(O)CH3], Where n = 10, 12, R = Me, Et

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The processes of nucleophilic addition of acetylacetone as a C-nucleophile to multiple bonds of nitrile derivatives of boron cluster anions have been studied in this work. The structure of the products was established by multinuclear NMR spectroscopy, ESI-mass spectrometry, and IR spectroscopy. The structure of compound (NBu4)[2-B10H9NH=C(C2H5)C(C(OH)CH3)C(O)CH3] was established by single crystal X-ray analysis.

全文:

受限制的访问

作者简介

A. Nelyubin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

N. Selivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

A. Bykov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

I. Klyukin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

A. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

K. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Hosmane N.S., Eagling R. // Handbook of Boron Science. World Scientific (Europe), 2018. V. 4. https://doi.org/10.1142/q0130-vol4
  2. Kapuscinski S., Abdulmojeed M.B., Schafer T.E. et al. // Inorg. Chem. Front. 2021. V. 8. № 4. P. 1066. https://doi.org/10.1039/d0qi01353f
  3. Jacob L., Rzeszotarska E., Koyioni M. et al. // Chem. Mater. 2022. V. 34. № 14. P. 6476. https://doi.org/10.1021/acs.chemmater.2c01165
  4. Duchêne L., Kim D.H., Song Y.B. et al. // Energy Storage Mater. 2020. V. 26. P. 543. https://doi.org/10.1016/j.ensm.2019.11.027
  5. Brighi M., Murgia F., Łodziana Z. et al. // J. Power Sources. 2018. V. 404. P. 7. https://doi.org/10.1016/j.jpowsour.2018.09.085
  6. Yapryntsev A.D., Bykov A.Yu., Baranchikov A.E. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3421. https://doi.org/10.1021/acs.inorgchem.6b02948
  7. Stepanova M., Dobrodumov A., Averianov I. et al. // Polymers (Basel). 2022. V. 14. № 18. P. 3864. https://doi.org/10.3390/polym14183864
  8. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  9. Matveev E.Yu., Garaev T.M., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 670. https://doi.org/10.1134/S0036023623600533
  10. Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
  11. Hamdaoui M., Varkhedkar R., Sun J. et al. // Synth. Inorg. Chem. 2021. P. 343. https://doi.org/10.1016/B978-0-12-818429-5.00007-7
  12. Seneviratne D.S., Saifi O., Mackeyev Y. et al. // Cells. 2023. V. 12. № 10. P. 1398. https://doi.org/10.3390/cells12101398
  13. Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. № March. P. 1. https://doi.org/10.3389/fchem.2021.619052
  14. Zhang Z., Chong Y., Liu Y. et al. // Cancers (Basel). 2023. V. 15. № 16. P. 4060. https://doi.org/10.3390/cancers15164060
  15. Suzuki M. // Int. J. Clin. Oncol. 2020. V. 25. № 1. P. 43. https://doi.org/10.1007/s10147-019-01480-4
  16. Akimov S.S., Matveev E.Yu., Kubasov A.S. et al. // Russ. Chem. Bull. 2013. V. 62. № 6. P. 1417. https://doi.org/10.1007/s11172-013-0204-0
  17. Goswami L.N., Ma L., Chakravarty S. et al. // Inorg. Chem. 2013. V. 52. № 4. P. 1694. https://doi.org/10.1021/ic3017613
  18. Popova Т. V., Pyshnaya I.A., Zakharova O.D. et al. // Biomedicines. 2021. V. 9. № 1. P. 1. https://doi.org/10.3390/biomedicines9010074
  19. Li J., Shi Y., Zhang Z. et al. // Bioconjug. Chem. 2019. V. 30. № 11. P. 2870. https://doi.org/10.1021/acs.bioconjchem.9b00578
  20. Zhdanov A.P., Nelyubin A.V., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 841. https://doi.org/10.1134/S0036023619070180
  21. Nelyubin A.V., Klyukvin I.N., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 684. https://doi.org/10.1134/S003602362360048X
  22. Nelyubin A.V., Sokolov M.S., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1751. https://doi.org/10.1134/S003602362260109X
  23. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
  24. Zhdanov A.P., Polyakova I.N., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 6. https://doi.org/10.1134/S003602361106026X
  25. Zhdanov A.P., Klyukin I.N., Bykov A.Yu. et al. // Polyhedron. 2017. V. 123. P. 176. https://doi.org/10.1016/j.poly.2016.11.035
  26. Daines E.A., Bolotin D.S., Bokach N.A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 372. https://doi.org/10.1016/j.ica.2017.11.054
  27. Mindich A.L., Bokach N.A., Kuznetsov M.L. et al. // Organometallics. 2013. V. 32. № 21. P. 6576. https://doi.org/10.1021/om400892x
  28. Mindich A.L., Bokach N.A., Kuznetsov M.L. et al. // ChemPlusChem. 2012. V. 77. № 12. P. 1075. https://doi.org/10.1002/cplu.201200257
  29. Burianova V.K., Bolotin D.S., Novikov A.S. et al. // Inorg. Chim. Acta. 2018. V. 482. P. 838. https://doi.org/10.1016/j.ica.2018.07.038
  30. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2019. V. 194. № 10. P. 983. https://doi.org/10.1080/10426507.2019.1631312
  31. Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
  32. Ezhov A.V., Vyal’ba F.Y., Kluykin I.N. et al. // Macroheterocycles. 2017. V. 10. № 4–5. P. 505. https://doi.org/10.6060/mhc171254z
  33. Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
  34. Nelyubin A.V., Selivanov N.A., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1390. https://doi.org/10.1134/S0036023621090096
  35. Bruker. SAINT. Bruker AXS Inc., Madison, WI, 2018.
  36. Sheldrick G.M. (2008) SADABS, Version 2008/1. Bruker AXS Inc., Germany.
  37. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  39. Voinova V.V., Selivanov N.A., Plyushchenko I.V. et al. // Molecules. 2021. V. 26. № 1. P. 248. https://doi.org/10.3390/molecules26010248
  40. Allen F.H., Kennard O., Watson D.G. et al. // J. Chem. Soc., Perkin Trans. 2. 1987. № 12. P. S1. https://doi.org/10.1039/p298700000s1

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the reaction of nucleophilic addition of acetylacetone to [B12H11NCR]anions (R = Me, Et).

下载 (113KB)
3. Fig. 2. Scheme of the nucleophilic addition reaction of acetylacetone to [2-B10H9NCR]anions (R = Me, Et).

下载 (108KB)
4. Fig. 3. Structure of the anion [2-B10H9NH=C(C2H5)C(C(OH)CH3)C(O)CH3]- according to single crystal PCA data.

下载 (314KB)
5. Fig. 4. Hydrogen bonds in the acetylacetonate moiety.

下载 (126KB)

版权所有 © Russian Academy of Sciences, 2024