The Iminoacylation Reaction of Iodoaniline with [2-B10H9NCCH3] Anion is a Route to the Preparation of New Boron-Containing Synthons

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This work is devoted to the study of the nucleophilic addition reaction of isomers of iodo-aniline to the nitrile derivative of closo-decaborate anion. The structure of the products was established by multinuclear NMR spectroscopy, ESI-mass spectrometry, and IR spectroscopy. The structure of compound (NBu4)[2-B10H9NHC(CH3)HN(2-C6H4I)] was established by single crystal X-ray analysis.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Zhdanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

A. Nelyubin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

N. Selivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

A. Bykov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

I. Klyukin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

K. Zhizhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: zhdanov@igic.ras.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Wang Z., Wang Z., Ma X. et al. // Int. J. Hydrogen. Energy. 2021. V. 46. № 60. P. 30750. https://doi.org/10.1016/j.ijhydene.2021.06.196
  2. Wang Z., Liu Y., Zhang H. et al. // J. Colloid. Interface Sci. 2020. V. 566. P. 135. https://doi.org/10.1016/j.jcis.2020.01.047
  3. Duchêne L., Kühnel R.S., Rentsch D. et al. // Chem. Commun. 2017. V. 53. № 30. P. 4195. https://doi.org/10.1039/c7cc00794a
  4. Gigante A., Duchêne L., Moury R. et al. // ChemSusChem. 2019. V. 12. № 21. P. 4832. https://doi.org/10.1002/cssc.201902152
  5. Duchêne L., Lunghammer S., Burankova T. et al. // Chem. Mater. 2019. V. 31. № 9. P. 3449. https://doi.org/10.1021/acs.chemmater.9b00610
  6. Shakirova O.G., Lavrenova L.G., Bogomyakov A.S. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 786. https://doi.org/10.1134/S003602361507013X
  7. Lavrenova L.G., Shakirova O.G. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 690. https://doi.org/10.1134/S0036023623600764
  8. Malinina E.A., Myshletsov I.I., Buzanov G.A. et al. // Molecules. 2023. V. 28. № 1. https://doi.org/10.3390/molecules28010453
  9. Yorov K.E., Zhdanov A.P., Kamilov R.Kh. et al. // ACS Appl. Nano Mater. 2022. V. 5. № 8. P. 11529. https://doi.org/10.1021/acsanm.2c02550
  10. Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
  11. Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 421. https://doi.org/10.1007/s00775-022-01937-4
  12. Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
  13. Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
  14. Las’kova Yu.N., Serdyukov A.A., Sivaev I.B. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 621. https://doi.org/10.1134/S0036023623600612
  15. International Atomic Energy Agency, Advances in Boron Neutron Capture Therapy, 2023. https://www.iaea.org/publications/15339/advances-in-boron-neutron-capture-therapy (accessed December 12, 2023).
  16. Igaki H., Murakami N., Nakamura S. et al. // Clin. Transl. Radiat. Oncol. 2022. V. 33. P. 128. https://doi.org/10.1016/j.ctro.2022.02.006
  17. Zhang Z., Chong Y., Liu Y. et al. // Cancers (Basel). 2023. V. 15. № 16. P. 4060. https://doi.org/10.3390/cancers15164060
  18. Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2019. V. 194. № 10. P. 983. https://doi.org/10.1080/10426507.2019.1631312
  19. Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
  20. Prikaznov A.V., Shmal’ko A.V., Sivaev I.B. et al. // Polyhedron. 2011. V. 30. № 9. P. 1494. https://doi.org/10.1016/j.poly.2011.02.055
  21. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
  22. Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1776. https://doi.org/10.1134/S0036023622601106
  23. Kubasov A.S., Turishev E.S., Golubev A.V. et al. // Inorg. Chim. Acta. 2020. V. 507. P. 119589. https://doi.org/10.1016/j.ica.2020.119589
  24. Zhang Y., Sun Y., Wang T. et al. // Molecules. 2018. V. 23. № 12. P. 1. https://doi.org/10.3390/molecules23123137
  25. Feakes D.A., Shelly K., Knobler C.B. et al. // Proc. Natl. Acad. Sci. U.S.A. 2006. V. 91. № 8. P. 3029. https://doi.org/10.1073/pnas.91.8.3029
  26. Bregadze V.I., Sivaev I.B., Dubey R.D. et al. // Chem. Eur. J. 2020. V. 26. № 61. P. 13832. https://doi.org/10.1002/chem.201905083
  27. Kanygin V., Zaboronok A., Taskaeva I. et al. // J. Fluoresc. 2021. V. 31. № 1. P. 73. https://doi.org/10.1007/s10895-020-02637-5
  28. Wang Y., Xu Y., Yang J. et al. // Mater. Chem. Front. 2021. V. 5. № 6. P. 2771. https://doi.org/10.1039/d0qm00867b
  29. Popova Т.V., Pyshnaya I.A., Zakharova O.D. et al. // Biomedicines. 2021. V. 9. № 1. P. 74. https://doi.org/10.3390/biomedicines9010074
  30. Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
  31. Sheldrick G.M. SADABS, Version 2008/1. Bruker AXS Inc., Germany.
  32. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  33. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  34. Voinova V.V., Selivanov N.A., Plyushchenko I.V. et al. // Molecules. 2021. V. 26. № 1. P. 248. https://doi.org/10.3390/molecules26010248
  35. Lavastre O., Cabioch S., Dixneuf P.H. et al. // Tetrahedron. 1997. V. 53. № 22. P. 7595. https://doi.org/10.1016/S0040-4020(97)00451-1
  36. Duval R., Kolb S., Braud E. et al. // J. Comb. Chem. 2009. V. 11. № 6. P. 947. https://doi.org/10.1021/cc900140f
  37. Zhao H., He W., Yao R. et al. // Adv. Synth. Catal. 2014. V. 356. № 14–15. P. 3092. https://doi.org/10.1002/adsc.201400381
  38. da Silva G., Luz A.F.S., Duarte D. et al. // ChemMedChem. 2023. V. 18. № 17. https://doi.org/10.1002/cmdc.202300264
  39. Beladhria A., Beydoun K., Ammar H. et al. // Synthesis (Stuttg.). 2012. V. 44. № 14. P. 2264. https://doi.org/10.1055/s-0031-1291124
  40. Zhdanov A.P., Polyakova I.N., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 6. https://doi.org/10.1134/S003602361106026X
  41. Zhdanova K.A., Zhdanov A.P., Ezhov A.V. et al. // Russ. Chem. Bull. 2014. V. 63. № 1. P. 194. https://doi.org/10.1007/s11172-014-0413-1
  42. Ezhov A.V., Vyal’ba F.Y., Kluykin I.N. et al. // Macroheterocycles. 2017. V. 10. № 4–5. https://doi.org/10.6060/mhc171254z

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. General scheme of the reaction.

Жүктеу (100KB)
3. Fig. 2. Fragment of 1H NMR spectra of compounds 2 (a), 3 (b), 4 (c).

Жүктеу (183KB)
4. Fig. 3. Structure of the anion [2-B10H9NH=C(CH3)NH(2-C6H4I)]- based on single crystal PCA data.

Жүктеу (149KB)
5. Fig. 4. Supramolecular interactions in structure 2.

Жүктеу (259KB)

© Russian Academy of Sciences, 2024