Luminescent Mn2+-Doped MgO–Al2O3–ZrO2–SiO2 Sol-Gel Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In present work Mn2+-doped MgO-Al2O3-ZrO2-SiO2 materials were synthesized. Their structure, morphology, chemical composition and luminescent properties were studied using X-Ray diffraction, scanning electron microscopy, EDX analysis and luminecent spectroscopy. It was shown that the application of sol-gel method provides the high-volume homogeneity of chemical composition of synthesized materials. Introduction of Mn into the composition of sol-gel materials accelerates significantly the crystalization processes during the thermal treatment. In the luminescence spectra several groups of emission bands are observed. These bands are situated in blue and yellow-red part of spectrum. this phenomenon is related with incorporation of Mn2+ into the structure of different crystals formed during the thermal treatment of gels. Obtained materials can be perspective for application as luminophores in the lighting for plant production.

Full Text

Restricted Access

About the authors

S. K. Evstropiev

Vavilov State Optical Institute; ITMO University; Saint Petersburg State Institute of Technology

Author for correspondence.
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

V. L. Stolyarova

Institute of Silicate Chemistry of Russian Academy of Sciences; Saint Petersburg State University

Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg

A. S. Saratovskii

Saint Petersburg State Institute of Technology; Institute of Silicate Chemistry of Russian Academy of Sciences

Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg

D. V. Bulyga

Vavilov State Optical Institute; ITMO University

Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg

K. V. Dukelskii

Vavilov State Optical Institute; ITMO University; Bonch-Bruevich Saint Petersburg State University of Telecommunications

Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

N. B. Knyazyan

Armenian State Institute of Inorganic Chemistry

Email: evstropiev@bk.ru
Armenia, Yerevan

D. A. Yurchenko

Institute of Silicate Chemistry of Russian Academy of Sciences

Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg

References

  1. Omri K., Alharbi F. // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 12466. https://doi.org/10.1007/s10854-021-05880-z
  2. Geng R., Zhou B., Wang J. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 7. P. 4709. https://doi.org/10.1111/jace.18447
  3. Li B., Xia Q., Wang Z. // J. Australian Ceram. Soc. 2021. V. 57. P. 927. https://doi.org/10.1007/s41779-021-00588-z
  4. Ran W., Wang L., Liu Q. et al. // RSC Adv. 2017. V. 7. P. 17612. https://doi.org/10.1039/C7RA01623A
  5. Lei B., Liu Y., Ye Z., Shi C. // J. Lumin. 2004. V. 109. № 3–4. P. 215. https://doi.org/10.1016/j.jlumin.2004.02.010
  6. Lojpur V., Nikolić M.G., Jovanović D. et al. // Appl. Phys. Lett. 2013. V. 103. P. 141912. https://doi.org/10.1063/1.4824208
  7. Liu W.-R., Huang C.-H., Yeh C.-W. et al. // RSC Adv. 2013. V. 3. P. 9023. https://doi.org/10.1039/c3ra40471d
  8. Liu W., Lin Q., Li H. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14954. https://doi.org/10.1021/jacs.6b08085
  9. Xu X., Xing Y., Yang Z. // Mater. Res. Express. 2022. V. 9. P. 015202. https://doi.org/10.1088/2053-1591/ac4b50
  10. Fang Z., Peng W., Zheng S. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1658. https://doi.org/10.1016/j.eurceramsoc.2019.12.025
  11. Li P., Peng M., Wondraczek L. et al. // J. Mater. Chem. C. 2015. V. 3. № 14. P. 3406. https://doi.org/10.1039/C5TC00047E
  12. Batygov S.K., Brekhovskikh M.N., Moiseeva L.V. et al. // Inorg. Mater. 2019. V. 55. № 11. P. 1185. https://doi.org/10.1134/S0020168519110025
  13. Qiu J., Igarashi H., Makishima A. // Sci. Technol. Adv. Mater. 2005. V. 6. P. 431. https://doi.org/10.1016/j.stam.2004.12.002
  14. Томилин О.Б., Мурюнин Е.Е., Фадин М.В. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 310. https://doi.org/10.318857/S0044457X22601742
  15. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1135 https://doi.org/10.1134/S0036023620080069
  16. Brekhovskikh M.N., Batygov S.K., Moiseeva L.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1855. https://doi.org/10.1134/S0036023622600733
  17. Tanabe Y., Sugano S. // J. Phys. Soc. Jpn. 1954. V. 9. P. 776. https://doi.org/10.1143/JPSJ.9.766.
  18. Zhuang Y., Ueda J., Tanabe S. // Appl. Phys. Lett. 2014. V. 105. P. 191904. https://doi.org/10.1063/1.4901749
  19. Czaja M., Lisiecki R., Juroszek R. et al. // Minerals. 2021. V. 11. P. 1215. https://doi,org/10.3390/min11111215.
  20. Lin S., Lin H., Ma C. et al. // Light: Sci. Appl. 2020. V. 9. P. 22. https://doi.org/10.1038/s41377-020-0258-3.
  21. Warner T.E., Bancells M.M., Brilner Lund P. et al. // J. Solid State Chem. 2019. V. 277. P. 434. https://doi.org/10.1016/j.jssc.2019.06.038
  22. Luchenko A., Zhydachevskyy Y., Ubizskii S. et al. // Sci. Rep. 2019. V. 9. P. 9544. https://doi/org/10.1038/s41598-019-45869-7
  23. Wei Donglei, Seo Hyo Jin // J. Mater. Chem. C. 2020. V. 8. P. 7899. https://doi.org/10.1039/D0TC01143F
  24. Yu C.F., Lin P. // J. Appl. Phys. 1996. V. 79. P. 7191. https://doi/org/10.1063/1.361435
  25. Selot A., Tripathi J., Tripathi S. et al. // Luminescence. 2014. V. 29. № 4. P. 362. https://doi/org/10.1002/bio.2553
  26. Bilgili O. // Acta Physica Polonica A. 2019. V. 136. № 3. P. 460.
  27. Dhanalakshmi A., Natarajan B., Ramadas V. et al. // Pramana J. Phys. 2016. V. 87. P. 57. https://doi.org/10.1007/s12043-016-1248-0
  28. Hu Q., Gao Z., Lu X. et al. // J. Mater. Chem. C. 2017. V. 5. P. 11806. https://doi.org/10.1039/c7tc04020b
  29. Hua Z., Tang G., Wei Q. et al. // Int. J. Appl. Glass Sci. 2023. V. 14. № 4. P. 573. https://doi.org/10.1111/ijag.16640
  30. Da N., Peng M., Krolikowski S. et al. // Opt. Express. 2010. V. 18. № 3. P. 2549. https://doi.org/10.1364/OE.18.002549
  31. Evstropiev S.K., Yurchenko D.A., Stolyarova V.L. et al. // Ceram. Int. 2022. V. 48. № 17. P. 24517. https://doi.org/10.1016/j/ceramint.2022.05.090
  32. Bortkevich A.V., Dymshits O.S., Zhilin A.A. et al. // J. Opt. Technol. 2002. V. 69. № 8. P. 558.
  33. Хайдуков Н.М., Бреховских М.Н., Кирикова Н.Ю. и др. // Опт. и спектр. 2023. Т. 131. Вып. 4. С. 450. https://doi.org/10/21883/OS.2023.04.55547.56-22
  34. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Yu. et al. // Ceram. Int. 2020. V. 46. № 13. P. 21351. https://doi.org/10.1016/j.ceramint.2020.05.231
  35. Yano A., Fujiwara K. // Plant Methods. 2012. V. 8. P. 46. https://www.plantmethods.com/content/8/1/46
  36. Прикупец Л.Б. // Технологическое освещение в агропромышленном комплексе России. Светотехника. 2017. № 6. С. 6. Prikupets L.B. // L&E 2018. V. 26. № 1. P. 7.
  37. Chen W., Zhang X., Zhou J. et al. // J. Mater. Chem. C. 2020. V. 8. P. 3996. https://doi.org/10.1039/dotc00061b
  38. Yurchenko D.A., Evstropiev S.K., Shashkin A.V. et al. // Dokl. Ross. Acad. Nauk, Khim., Nauki o Mater. 2021. V. 499. № 1. P. 40. https://doi.org/10.1134/s0012500821080048
  39. Volk Yu.V., Denisov I.A., Malyarevich A.M. // Appl. Optics. 2004. V. 43. № 3. P. 682. https://doi.org/10.1364/AO.43.000682
  40. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  41. Catalano M., Bloise A., Pingitore V. et al. // Cryst. Res. Technol. 2014. V. 49. № 9. P. 736. https://doi.org/10.1002/crat.201400102
  42. Dlamini C., Mhlongo M.R., Koao L.F. et al. // Appl. Phys. A. 2020. V. 126. P. 75. https://doi.org/10.1007/s00339-019-3248-7
  43. Wang Y.-K., Xie X., Zhu C.-G. // ACS Omega. 2022. V. 7. P. 1267. https://doi.org/10.1021/acsomega.1c06583
  44. Salh R. // Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-Ray Analysis, Infrared Spectroscopy Studies, Crystalline Silicon / Ed. Basu S. Properties and Uses. 2011. ISBN: 978-953-307-587-7
  45. Song E., Zhou Y., Wei Y. et al. // J. Mater. Chem. C. 2019. V. 7. № 27. P. 8192. https://doi/org/10.1039/C9TC02107/1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustrative Tanabe-Sugano diagram constructed on the basis of data [18, 20] and demonstrating the character of the influence of the crystal field strength of the nearest environment on the splitting of energy levels of Mn2+ ions.

Download (101KB)
3. Fig. 2. X-ray diffraction patterns of sol-gel powders of the MgO-Al2O3-ZrO2-SiO2 system obtained from gel 1 containing no Mn (a) and from gel 2 containing Mn (b), heat-treated at different temperatures.

Download (235KB)
4. Fig. 3. Electron microscopic images of Mn-free gel 1. Initial gel before heat treatment (a), gel 1, heat treated at 1150C (b).

Download (122KB)
5. Fig. 4. Electron microscopic images of gel 2 containing Mn. Original gel before heat treatment (a), gel heat treated at 600 (b); 900 (c); 1150C (d).

Download (198KB)
6. Fig. 5. (a) Emission (1-4) and luminescence excitation spectra (5, 6) of gel 2 heat-treated at 900C. Luminescence excitation wavelengths: 250 (1); 350 (2); 400 (3); 480 nm (4). Emission wavelengths: 560 (5); 640 nm (6). (b) Emission (1-5) and luminescence excitation (6) spectra of gel 2 heat-treated at 1150C. Luminescence excitation wavelength: 250 (1); 300 (2); 400 (3); 450 (4); 480 nm (5). Emission wavelength: 560 nm (6). (c) Difference emission spectra (excitation wavelength 350 (1) and 400 nm (2)) of gel 2, showing the changes in the emission spectra of the gel when the heat treatment temperature was increased from 900 to 1150С.

Download (125KB)

Copyright (c) 2024 Russian Academy of Sciences