Luminescent Mn2+-Doped MgO–Al2O3–ZrO2–SiO2 Sol-Gel Materials
- Authors: Evstropiev S.K.1,2,3, Stolyarova V.L.4,5, Saratovskii A.S.3,4, Bulyga D.V.1,2, Dukelskii K.V.1,2,6, Knyazyan N.B.7, Yurchenko D.A.4
-
Affiliations:
- Vavilov State Optical Institute
- ITMO University
- Saint Petersburg State Institute of Technology
- Institute of Silicate Chemistry of Russian Academy of Sciences
- Saint Petersburg State University
- Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Armenian State Institute of Inorganic Chemistry
- Issue: Vol 69, No 3 (2024)
- Pages: 394-401
- Section: STRUCTURE, MAGNETIC AND OPTICAL PROPERTIES OF MATERIALS
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666611
- DOI: https://doi.org/10.31857/S0044457X24030134
- EDN: https://elibrary.ru/YDOMTQ
- ID: 666611
Cite item
Abstract
In present work Mn2+-doped MgO-Al2O3-ZrO2-SiO2 materials were synthesized. Their structure, morphology, chemical composition and luminescent properties were studied using X-Ray diffraction, scanning electron microscopy, EDX analysis and luminecent spectroscopy. It was shown that the application of sol-gel method provides the high-volume homogeneity of chemical composition of synthesized materials. Introduction of Mn into the composition of sol-gel materials accelerates significantly the crystalization processes during the thermal treatment. In the luminescence spectra several groups of emission bands are observed. These bands are situated in blue and yellow-red part of spectrum. this phenomenon is related with incorporation of Mn2+ into the structure of different crystals formed during the thermal treatment of gels. Obtained materials can be perspective for application as luminophores in the lighting for plant production.
Keywords
Full Text

About the authors
S. K. Evstropiev
Vavilov State Optical Institute; ITMO University; Saint Petersburg State Institute of Technology
Author for correspondence.
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg
V. L. Stolyarova
Institute of Silicate Chemistry of Russian Academy of Sciences; Saint Petersburg State University
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg
A. S. Saratovskii
Saint Petersburg State Institute of Technology; Institute of Silicate Chemistry of Russian Academy of Sciences
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg
D. V. Bulyga
Vavilov State Optical Institute; ITMO University
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg
K. V. Dukelskii
Vavilov State Optical Institute; ITMO University; Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg
N. B. Knyazyan
Armenian State Institute of Inorganic Chemistry
Email: evstropiev@bk.ru
Armenia, Yerevan
D. A. Yurchenko
Institute of Silicate Chemistry of Russian Academy of Sciences
Email: evstropiev@bk.ru
Russian Federation, Saint Petersburg
References
- Omri K., Alharbi F. // J. Mater. Sci.: Mater. Electron. 2021. V. 32. P. 12466. https://doi.org/10.1007/s10854-021-05880-z
- Geng R., Zhou B., Wang J. et al. // J. Am. Ceram. Soc. 2022. V. 105. № 7. P. 4709. https://doi.org/10.1111/jace.18447
- Li B., Xia Q., Wang Z. // J. Australian Ceram. Soc. 2021. V. 57. P. 927. https://doi.org/10.1007/s41779-021-00588-z
- Ran W., Wang L., Liu Q. et al. // RSC Adv. 2017. V. 7. P. 17612. https://doi.org/10.1039/C7RA01623A
- Lei B., Liu Y., Ye Z., Shi C. // J. Lumin. 2004. V. 109. № 3–4. P. 215. https://doi.org/10.1016/j.jlumin.2004.02.010
- Lojpur V., Nikolić M.G., Jovanović D. et al. // Appl. Phys. Lett. 2013. V. 103. P. 141912. https://doi.org/10.1063/1.4824208
- Liu W.-R., Huang C.-H., Yeh C.-W. et al. // RSC Adv. 2013. V. 3. P. 9023. https://doi.org/10.1039/c3ra40471d
- Liu W., Lin Q., Li H. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14954. https://doi.org/10.1021/jacs.6b08085
- Xu X., Xing Y., Yang Z. // Mater. Res. Express. 2022. V. 9. P. 015202. https://doi.org/10.1088/2053-1591/ac4b50
- Fang Z., Peng W., Zheng S. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1658. https://doi.org/10.1016/j.eurceramsoc.2019.12.025
- Li P., Peng M., Wondraczek L. et al. // J. Mater. Chem. C. 2015. V. 3. № 14. P. 3406. https://doi.org/10.1039/C5TC00047E
- Batygov S.K., Brekhovskikh M.N., Moiseeva L.V. et al. // Inorg. Mater. 2019. V. 55. № 11. P. 1185. https://doi.org/10.1134/S0020168519110025
- Qiu J., Igarashi H., Makishima A. // Sci. Technol. Adv. Mater. 2005. V. 6. P. 431. https://doi.org/10.1016/j.stam.2004.12.002
- Томилин О.Б., Мурюнин Е.Е., Фадин М.В. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 310. https://doi.org/10.318857/S0044457X22601742
- Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1135 https://doi.org/10.1134/S0036023620080069
- Brekhovskikh M.N., Batygov S.K., Moiseeva L.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1855. https://doi.org/10.1134/S0036023622600733
- Tanabe Y., Sugano S. // J. Phys. Soc. Jpn. 1954. V. 9. P. 776. https://doi.org/10.1143/JPSJ.9.766.
- Zhuang Y., Ueda J., Tanabe S. // Appl. Phys. Lett. 2014. V. 105. P. 191904. https://doi.org/10.1063/1.4901749
- Czaja M., Lisiecki R., Juroszek R. et al. // Minerals. 2021. V. 11. P. 1215. https://doi,org/10.3390/min11111215.
- Lin S., Lin H., Ma C. et al. // Light: Sci. Appl. 2020. V. 9. P. 22. https://doi.org/10.1038/s41377-020-0258-3.
- Warner T.E., Bancells M.M., Brilner Lund P. et al. // J. Solid State Chem. 2019. V. 277. P. 434. https://doi.org/10.1016/j.jssc.2019.06.038
- Luchenko A., Zhydachevskyy Y., Ubizskii S. et al. // Sci. Rep. 2019. V. 9. P. 9544. https://doi/org/10.1038/s41598-019-45869-7
- Wei Donglei, Seo Hyo Jin // J. Mater. Chem. C. 2020. V. 8. P. 7899. https://doi.org/10.1039/D0TC01143F
- Yu C.F., Lin P. // J. Appl. Phys. 1996. V. 79. P. 7191. https://doi/org/10.1063/1.361435
- Selot A., Tripathi J., Tripathi S. et al. // Luminescence. 2014. V. 29. № 4. P. 362. https://doi/org/10.1002/bio.2553
- Bilgili O. // Acta Physica Polonica A. 2019. V. 136. № 3. P. 460.
- Dhanalakshmi A., Natarajan B., Ramadas V. et al. // Pramana J. Phys. 2016. V. 87. P. 57. https://doi.org/10.1007/s12043-016-1248-0
- Hu Q., Gao Z., Lu X. et al. // J. Mater. Chem. C. 2017. V. 5. P. 11806. https://doi.org/10.1039/c7tc04020b
- Hua Z., Tang G., Wei Q. et al. // Int. J. Appl. Glass Sci. 2023. V. 14. № 4. P. 573. https://doi.org/10.1111/ijag.16640
- Da N., Peng M., Krolikowski S. et al. // Opt. Express. 2010. V. 18. № 3. P. 2549. https://doi.org/10.1364/OE.18.002549
- Evstropiev S.K., Yurchenko D.A., Stolyarova V.L. et al. // Ceram. Int. 2022. V. 48. № 17. P. 24517. https://doi.org/10.1016/j/ceramint.2022.05.090
- Bortkevich A.V., Dymshits O.S., Zhilin A.A. et al. // J. Opt. Technol. 2002. V. 69. № 8. P. 558.
- Хайдуков Н.М., Бреховских М.Н., Кирикова Н.Ю. и др. // Опт. и спектр. 2023. Т. 131. Вып. 4. С. 450. https://doi.org/10/21883/OS.2023.04.55547.56-22
- Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Yu. et al. // Ceram. Int. 2020. V. 46. № 13. P. 21351. https://doi.org/10.1016/j.ceramint.2020.05.231
- Yano A., Fujiwara K. // Plant Methods. 2012. V. 8. P. 46. https://www.plantmethods.com/content/8/1/46
- Прикупец Л.Б. // Технологическое освещение в агропромышленном комплексе России. Светотехника. 2017. № 6. С. 6. Prikupets L.B. // L&E 2018. V. 26. № 1. P. 7.
- Chen W., Zhang X., Zhou J. et al. // J. Mater. Chem. C. 2020. V. 8. P. 3996. https://doi.org/10.1039/dotc00061b
- Yurchenko D.A., Evstropiev S.K., Shashkin A.V. et al. // Dokl. Ross. Acad. Nauk, Khim., Nauki o Mater. 2021. V. 499. № 1. P. 40. https://doi.org/10.1134/s0012500821080048
- Volk Yu.V., Denisov I.A., Malyarevich A.M. // Appl. Optics. 2004. V. 43. № 3. P. 682. https://doi.org/10.1364/AO.43.000682
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
- Catalano M., Bloise A., Pingitore V. et al. // Cryst. Res. Technol. 2014. V. 49. № 9. P. 736. https://doi.org/10.1002/crat.201400102
- Dlamini C., Mhlongo M.R., Koao L.F. et al. // Appl. Phys. A. 2020. V. 126. P. 75. https://doi.org/10.1007/s00339-019-3248-7
- Wang Y.-K., Xie X., Zhu C.-G. // ACS Omega. 2022. V. 7. P. 1267. https://doi.org/10.1021/acsomega.1c06583
- Salh R. // Silicon Nanocluster in Silicon Dioxide: Cathodoluminescence, Energy Dispersive X-Ray Analysis, Infrared Spectroscopy Studies, Crystalline Silicon / Ed. Basu S. Properties and Uses. 2011. ISBN: 978-953-307-587-7
- Song E., Zhou Y., Wei Y. et al. // J. Mater. Chem. C. 2019. V. 7. № 27. P. 8192. https://doi/org/10.1039/C9TC02107/1
Supplementary files
