Elastic Energy Relaxation During the Chemical Reaction with Single-Crystalline Silicon in the Process of Coordinated Substitution of Atoms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study focuses on providing a detailed microscopic description of the chemical transformation of a silicon crystal into a silicon carbide crystal through reaction with carbon monoxide gas on the (111) surface. To achieve this, we utilized the density functional theory in the spin-polarized PBE approximation. By employing the NEB method, we successfully established all intermediate (adsorption) states as well as a single transition state. Our results rэВeal that the transition state takes the form of a Si-O-C triangle, with bond lengths measuring 1.94 Å, 1.24 Å, and 2.29 Å. Additionally, we calculated the energy profile of this chemical transformation. Interestingly, we discovered that the formation of broken bonds generates both electric and magnetic fields during the transformation process. Furthermore, our findings indicate that the relaxation of elastic energy plays a significant role in facilitating the epitaxial growth of the crystal by weakening the bonds of necessary atoms. Consequently, we conclude that the (111) surface is highly suitable for silicon carbide growth via this method, particularly for semiconductor applications.

Full Text

Restricted Access

About the authors

S. A. Kukushkin

Institute for Problems of Mechanical Engineering of Russian Academy of Sciences

Author for correspondence.
Email: sergey.a.kukushkin@gmail.com
Russian Federation, Saint Petersburg

A. V. Osipov

Institute for Problems of Mechanical Engineering of Russian Academy of Sciences

Email: sergey.a.kukushkin@gmail.com
Russian Federation, Saint Petersburg

References

  1. Ferro G. // Crit. Rev. Solid State Mater. Sci. 2015. V. 40. № 1. P. 56. https://doi.org/10.1080/10408436.2014.940440
  2. Severino A., Locke C., Anzalone R. et al. // ECS Trans. 2011. V. 35. № 6. P. 99. https://doi.org/10.1149/1.3570851
  3. Kukushkin S.A., Osipov A.V. // J. Appl. Phys. 2013. V. 113. № 2. https://doi.org/10.1063/1.4773343
  4. Kukushkin S.A., Osipov A.V. // Russ. J. Gen. Chem. 2022. V. 92. № 4. P. 584. https://doi.org/10.1134/S1070363222040028
  5. Kukushkin S.A., Osipov A.V. // Phys. Solid State. 2016. V. 58. № 4. P. 747. https://doi.org/10.1134/S1063783416040120
  6. Kukushkin S.A., Osipov A.V., Feoktistov N.A. // Phys. Solid State. 2019. V. 61. № 3. P. 456. https://doi.org/10.1134/S1063783419030193
  7. Kukushkin S.A., Osipov A.V. // Materials (Basel). 2022. V. 15. № 13. P. 4653. https://doi.org/10.3390/ma15134653
  8. Kukushkin S.A., Osipov A.V., Soshnikov I.P. // Rev. Adv. Mater. Sci. 2017. V. 52. № 1–2. P. 29.
  9. Koryakin A.A., Kukushkin S.A., Osipov A.V. et al. // Materials (Basel). 2022. V. 15. № 18. P. 6202. https://doi.org/10.3390/ma15186202
  10. Kukushkin S.A., Osipov A.V. // Mech. Solids. 2013. V. 48. № 2. P. 216. https://doi.org/10.3103/S0025654413020143
  11. Kukushkin S.A., Osipov A.V., Telyatnik R.S. // Phys. Solid State. 2016. V. 58. № 5. P. 971. https://doi.org/10.1134/S1063783416050140
  12. Ермакова Е.Н., Максимовский Е.А., Юшина И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 256. https://doi.org/10.31857/S0044457X22601547
  13. Воронцов Е.С. // Успехи химии. 1965. Т. 34. № 11. С. 2020.
  14. Dovesi R., Civalleri B., Roetti C. et al. Ab Initio Quantum Simulation in Solid State Chemistry in Rev. Comput. // ChemInform. V. 36. № 48. P. 1. https://doi.org/10.1002/0471720895.ch1
  15. Tuan Hung N., Nugraha A.R.T., Saito R. Quantum ESPRESSO Course for Solid State Physics. N.Y.: Jenny Stanford Publishing, 2022. 372 p. https://doi.org/10.1201/9781003290964
  16. Lee J.G. Computational Materials Science: An Introduction, Boca Raton: CRC Press, 2016. 376 p. https://doi.org/10.1201/9781315368429
  17. Сангвал К. Травление кристаллов: Теория. Эксперимент. Применение: Пер. с англ. М.: Мир, 1990. 492 с.
  18. Kukushkin S., Osipov A., Redkov A. // Adv. Struct. Mater. 2022. V. 164. P. 335. https://doi.org/10.1007/978-3-030-93076-9_18
  19. Kukushkin S.A., Osipov A.V. // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. https://doi.org/10.1088/0022-3727/47/31/313001
  20. Kukushkin S.A., Osipov A.V. // Materials (Basel). 2021. V. 14. № 1. P. 78. https://doi.org/10.3390/ma14010078
  21. Henkelman G., Uberuaga B.P., Jónsson H. // J. Chem. Phys. 2000. V. 113. № 22. P. 9901. https://doi.org/10.1063/1.1329672
  22. Tolédano P., Dmitriev V. Reconstructive Phase Transitions, World Scientific, 1996. 416 p. https://doi.org/10.1142/2848

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Investigated supercell with periodic boundary conditions describing the Si(111) surface.

Download (161KB)
3. Fig. 2. Initial reactants R and final reaction products P after geometry optimization.

Download (176KB)
4. Fig. 3. “Pre-carbide” structure of the Si surface after substitution of half of the possible top layer atoms with C atoms.

Download (191KB)
5. Fig. 4. Positive charge zones in the “pre-carbide” structure of silicon with density >0.6 e/Å3.

Download (210KB)
6. Fig. 5. Difference in the density of electrons with spin up and spin down in the “pre-carbide” structure of silicon. The boundary of the light blue region corresponds to the difference of 0.03 e/Å3 (a), the boundary of the dark blue region corresponds to the difference of -0.01 e/Å3 (b).

Download (165KB)
7. Fig. 6. Energy profile of the substitution reaction (1) on the surface (111). R - reactants, P - reaction products, TS - transition state, A1 and A2 - adsorption states of CO and SiO molecules on the surface, respectively.

Download (71KB)
8. Fig. 7. A1 and A2 adsorption states of CO and SiO molecules on the (111) surface.

Download (148KB)
9. Fig. 8. Transition state of reaction (1) on surface (111).

Download (143KB)

Copyright (c) 2024 Russian Academy of Sciences