Elastic Energy Relaxation During the Chemical Reaction with Single-Crystalline Silicon in the Process of Coordinated Substitution of Atoms
- Authors: Kukushkin S.A.1, Osipov A.V.1
-
Affiliations:
- Institute for Problems of Mechanical Engineering of Russian Academy of Sciences
- Issue: Vol 69, No 3 (2024)
- Pages: 319-326
- Section: SYNTHESIS OF ADVANCED CARBON MATERIALS
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666596
- DOI: https://doi.org/10.31857/S0044457X24030065
- EDN: https://elibrary.ru/YEOUXE
- ID: 666596
Cite item
Abstract
This study focuses on providing a detailed microscopic description of the chemical transformation of a silicon crystal into a silicon carbide crystal through reaction with carbon monoxide gas on the (111) surface. To achieve this, we utilized the density functional theory in the spin-polarized PBE approximation. By employing the NEB method, we successfully established all intermediate (adsorption) states as well as a single transition state. Our results rэВeal that the transition state takes the form of a Si-O-C triangle, with bond lengths measuring 1.94 Å, 1.24 Å, and 2.29 Å. Additionally, we calculated the energy profile of this chemical transformation. Interestingly, we discovered that the formation of broken bonds generates both electric and magnetic fields during the transformation process. Furthermore, our findings indicate that the relaxation of elastic energy plays a significant role in facilitating the epitaxial growth of the crystal by weakening the bonds of necessary atoms. Consequently, we conclude that the (111) surface is highly suitable for silicon carbide growth via this method, particularly for semiconductor applications.
Full Text

About the authors
S. A. Kukushkin
Institute for Problems of Mechanical Engineering of Russian Academy of Sciences
Author for correspondence.
Email: sergey.a.kukushkin@gmail.com
Russian Federation, Saint Petersburg
A. V. Osipov
Institute for Problems of Mechanical Engineering of Russian Academy of Sciences
Email: sergey.a.kukushkin@gmail.com
Russian Federation, Saint Petersburg
References
- Ferro G. // Crit. Rev. Solid State Mater. Sci. 2015. V. 40. № 1. P. 56. https://doi.org/10.1080/10408436.2014.940440
- Severino A., Locke C., Anzalone R. et al. // ECS Trans. 2011. V. 35. № 6. P. 99. https://doi.org/10.1149/1.3570851
- Kukushkin S.A., Osipov A.V. // J. Appl. Phys. 2013. V. 113. № 2. https://doi.org/10.1063/1.4773343
- Kukushkin S.A., Osipov A.V. // Russ. J. Gen. Chem. 2022. V. 92. № 4. P. 584. https://doi.org/10.1134/S1070363222040028
- Kukushkin S.A., Osipov A.V. // Phys. Solid State. 2016. V. 58. № 4. P. 747. https://doi.org/10.1134/S1063783416040120
- Kukushkin S.A., Osipov A.V., Feoktistov N.A. // Phys. Solid State. 2019. V. 61. № 3. P. 456. https://doi.org/10.1134/S1063783419030193
- Kukushkin S.A., Osipov A.V. // Materials (Basel). 2022. V. 15. № 13. P. 4653. https://doi.org/10.3390/ma15134653
- Kukushkin S.A., Osipov A.V., Soshnikov I.P. // Rev. Adv. Mater. Sci. 2017. V. 52. № 1–2. P. 29.
- Koryakin A.A., Kukushkin S.A., Osipov A.V. et al. // Materials (Basel). 2022. V. 15. № 18. P. 6202. https://doi.org/10.3390/ma15186202
- Kukushkin S.A., Osipov A.V. // Mech. Solids. 2013. V. 48. № 2. P. 216. https://doi.org/10.3103/S0025654413020143
- Kukushkin S.A., Osipov A.V., Telyatnik R.S. // Phys. Solid State. 2016. V. 58. № 5. P. 971. https://doi.org/10.1134/S1063783416050140
- Ермакова Е.Н., Максимовский Е.А., Юшина И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 256. https://doi.org/10.31857/S0044457X22601547
- Воронцов Е.С. // Успехи химии. 1965. Т. 34. № 11. С. 2020.
- Dovesi R., Civalleri B., Roetti C. et al. Ab Initio Quantum Simulation in Solid State Chemistry in Rev. Comput. // ChemInform. V. 36. № 48. P. 1. https://doi.org/10.1002/0471720895.ch1
- Tuan Hung N., Nugraha A.R.T., Saito R. Quantum ESPRESSO Course for Solid State Physics. N.Y.: Jenny Stanford Publishing, 2022. 372 p. https://doi.org/10.1201/9781003290964
- Lee J.G. Computational Materials Science: An Introduction, Boca Raton: CRC Press, 2016. 376 p. https://doi.org/10.1201/9781315368429
- Сангвал К. Травление кристаллов: Теория. Эксперимент. Применение: Пер. с англ. М.: Мир, 1990. 492 с.
- Kukushkin S., Osipov A., Redkov A. // Adv. Struct. Mater. 2022. V. 164. P. 335. https://doi.org/10.1007/978-3-030-93076-9_18
- Kukushkin S.A., Osipov A.V. // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. https://doi.org/10.1088/0022-3727/47/31/313001
- Kukushkin S.A., Osipov A.V. // Materials (Basel). 2021. V. 14. № 1. P. 78. https://doi.org/10.3390/ma14010078
- Henkelman G., Uberuaga B.P., Jónsson H. // J. Chem. Phys. 2000. V. 113. № 22. P. 9901. https://doi.org/10.1063/1.1329672
- Tolédano P., Dmitriev V. Reconstructive Phase Transitions, World Scientific, 1996. 416 p. https://doi.org/10.1142/2848
Supplementary files
