2d Nanocrystals Of Zinc And Manganese(II, III) Oxides With Morphology Of Perforated Nanoflakes Obtained Using Hydrolysis Reactions Of Mn(OAc)2 AND Zn(OAc)2 By Gaseous Ammonia On The Surface Of Their Aqueous Solutions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper shows for the first time that 2D ZnO nanocrystals with the structure of wurtzite and Mn3O4 hausmanite and morphology of perforated nanoflakes can be obtained on the basis of compounds that are formed as a result of reactions occurring on the surface of aqueous solutions of acetates of the corresponding metals when it is treated in air atmosphere with gaseous NH3. Application of the marked nanocrystals on the silicon surface makes it hydrophobic in the case of ZnO and superhydrophilic in the case of Mn3O4. Using the proposed synthesis technique, sequential and multiple deposition of these compounds on the substrate surface can be performed and such “multilayers” can exhibit new properties.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Tolstoy

Saint Petersburg State University

Хат алмасуға жауапты Автор.
Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0003-3857-7238
Ресей, Saint Petersburg

L. Gulina

Saint Petersburg State University

Email: v.tolstoy@spbu.ru
ORCID iD: 0000-0002-1622-4311
Ресей, Saint Petersburg

E. Shilovskikh

Saint Petersburg State University

Email: v.tolstoy@spbu.ru
Ресей, Saint Petersburg

Әдебиет тізімі

  1. Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. № 2. P. 210. https://doi.org/10.1002/adma.201103241
  2. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
  3. Aslanov L.A., Dunaev S.F. // Russ. Chem. Rev. 2018. V. 87. № 9. P. https://doi.org/882. 10.1070/rcr4806
  4. Khan K., Tareen A.K., Aslam M. et al. // Nanoscale. 2019. V. 11. № 45. P. 21622. https://doi.org/10.1039/c9nr05919a
  5. Tsukanov A.A., Turk B., Vasiljeva O. et al. // Nanomaterials. 2022. V. 12. № 4. P. 650. https://doi.org/10.3390/nano12040650
  6. Mei L., Zhu S., Yin W. et al. // Theranostics. 2020. V. 10. № 2. P. 757. https://doi.org/10.7150/thno.39701
  7. Wang L., Takada K., Kajiyama A. et al. // Chem. Mater. 2003. V. 15. № 23. P. 4508. https://doi.org/10.1021/cm0217809
  8. Kaneva M.V., Tolstoy V.P. // Russ. J. Gen. Chem. 2022. V. 92. № 11. P. 2339. https://doi.org/10.1134/S1070363222110184
  9. Wu G., Wu X., Zhu X. et al. // ACS Nano. 2022. V. 16. № 7. P. 10130. https://doi.org/10.1021/acsnano.2c02841
  10. Zhou M., Lou X.W., Xie Y. // Nano Today. 2013. V. 8. № 6. P. 598. https://doi.org/10.1016/j.nantod.2013.12.002
  11. Haque F., Daeneke T., Kalantar-zadeh K. et al. // Nano-Micro Lett. 2018. V. 10. № 2. P. 23. https://doi.org/10.1007/s40820-017-0176-y
  12. Tolstoy V.P., Gulina L.B., Golubeva A.A. et al. // J. Solid State Electrochem. 2019. V. 23. № 2. P. 573. https://doi.org/10.1007/s10008-018-04165-6
  13. Korotcenkov G., Tolstoy V.P. // Nanomaterials. 2023. V. 13. № 2. P. 237. https://doi.org/10.3390/nano13020237
  14. Tolstoy V.P., Gulina L.B., Meleshko A.A. // Russ. Chem. Rev. 2023. V. 92. № 3. P. RCR5071. https://doi.org/10.57634/RCR5071
  15. Zhang Q., Chen D., Song Q. et al. // Surf. Interfaces. 2021. V. 23. P. 100979. https://doi.org/10.1016/j.surfin.2021.100979
  16. Peng L., Fang Z., Zhu Y. et al. // Adv. Energy Mater. 2018. V. 8. № 9. P. 1702179. https://doi.org/10.1002/aenm.201702179
  17. Peng L., Xiong P., Ma L. et al. // Nat. Commun. 2017. V. 8. P. 15139. https://doi.org/10.1038/ncomms15139
  18. Gicha B.B., Tufa L.T., Kang S. et al. // Nanomaterials. 2021. V. 11. № 6. P. 1388. https://doi.org/10.3390/nano11061388
  19. Nazarian-Samani M., Haghighat-Shishavan S., Nazarian-Samani M. et al. // Prog. Mater. Sci. 2021. V. 116. P. 100716. https://doi.org/10.1016/j.pmatsci.2020.100716
  20. Napi M.L.M., Sultan S.M., Ismail R. et al. // Materials. 2019. V. 12. № 18. P. 2985. https://doi.org/10.3390/ma12182985
  21. Abinaya K., Sharvanti P., Rajeswari Yogamalar N. // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 4. P. 454. https://doi.org/10.17586/2220-8054-2023-14-4-454-466
  22. Afineevskii A.V., Prozorov D.A., Smirnov D.V. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 6. P. 1560. https://doi.org/10.1134/S1070363223060282
  23. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
  24. Julien C.M., Mauger A. // Nanomaterials. 2017. V. 7. № 11. P. 396. https://doi.org/10.3390/nano7110396
  25. Makvandi P., Wang C., Zare E.N. et al. // Adv. Funct. Mater. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
  26. Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
  27. Ishioka T., Shibata Y., Takahashi M. et al. // Spectrochim. Acta, Part A. 1998. V. 54. № 12. P. 1827. https://doi.org/10.1016/S1386-1425(98)00063-8
  28. Dubal D.P., Dhawale D.S., Salunkhe R.R. et al. // J. Electrochem. Soc. 2010. V. 157. № 7. P. A812. https://doi.org/10.1149/1.3428675
  29. Poul L., Jouini N., Fiévet F. // Chem. Mater. 2000. V. 12. № 10. P. 3123. https://doi.org/10.1021/cm991179j
  30. Sabine T.M., Hogg S. // Acta Crystallogr., Sect. B. 1969. V. 25. № 11. P. 2254. https://doi.org/10.1107/S0567740869005528
  31. Aminoff G. // Z. Kristallogr. 1926. V. 64. № 63. P. 222.
  32. Wyckoff R.W.G. Crystal Structures. N.Y.: Interscience Publishers, 1963. 134 p.
  33. Strykanova V.V., Gulina L.B., Tolstoy V.P. et al. // ACS Omega. 2020. V. 5. № 25. P. 15728. https://doi.org/10.1021/acsomega.0c02258
  34. Su B., Li M., Shi Z. et al. // Langmuir. 2009. V. 25. № 6. P. 3640. https://doi.org/10.1021/la803948m
  35. Gulina L.B., Gurenko V.E., Tolstoy V.P. et al. // Langmuir. 2019. V. 35. № 47. P. 14983. https://doi.org/10.1021/acs.langmuir.9b02338
  36. Masuda Y., Ohji T., Kato K. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1666. https://doi.org/10.1021/am201811x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. SEM micrographs of layers formed on the surface of Zn(OAc)2 solution: a - initial sample, b - sample heated in air at 150С, c - sample heated in air at 300С.

Жүктеу (144KB)
3. Fig. 2. SPEM micrographs of fragments of layers formed on the surface of Zn(OAc)2 solution: a - initial sample, b - sample heated in air at 150С, c - sample heated in air at 300С.

Жүктеу (111KB)
4. Fig. 3. SEM micrographs of layers formed on the surface of Mn(OAc)2 solution: a - initial sample, b - sample heated in air at 150С, c - sample heated in air at 300С.

Жүктеу (140KB)
5. Fig. 4. SEM-micrographs of layers formed on the surface of a solution of a mixture of Zn(OAc)2 and Mn(OAc)2 taken in a 4 : 1 ratio: a - original sample, b - sample heated in air at 150С, c - sample heated in air at 300С.

Жүктеу (171KB)
6. Fig. 5. FT-IR spectra (a, b) and X-ray diffractograms (c, d) of layers obtained on the surface of Zn(OAc)2 (a, c) and Mn(OAc)2 (b, d) solutions: 1 - initial samples, 2-4 - samples heated in air at 150, 300 and 450С, respectively.

Жүктеу (230KB)
7. Fig. 6. Microphotographs of water droplets deposited on the surface of the studied layers on silicon: a - layers were obtained on the surface of Zn(OAc)2 solution; b - on the surface of Mn(OAc)2 solution; c - on the surface of the solution of a mixture of Zn(OAc)2 and Mn(OAc)2 taken in the ratio 4 : 1. Processing temperature of samples after synthesis and values of wetting angles in degrees are indicated on each of microphotographs (RT - room temperature).

Жүктеу (95KB)

© Russian Academy of Sciences, 2024