Application Of Vanadyl Alkoxoacetylacetonate In Formation Of v2O5 Electrochromic Films
- Authors: Gorobtsov P.Y.1, Simonenko N.P.1, Mokrushin A.S.1, Simonenko E.P.1, Kuznetsov N.T.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 4 (2024)
- Pages: 624-633
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666585
- DOI: https://doi.org/10.31857/S0044457X24040177
- EDN: https://elibrary.ru/ZXGPQL
- ID: 666585
Cite item
Abstract
Crystal structure, morphology and electrochromic properties of V2O5 film, prepared using vanadyl alkoxoacetylacetonate as precursor, were studied. We have shown that the obtained vanadium pentoxide contains significant amount of V4+ cations, which is indicated by low electron work function among other things. This results in material possessing anodic electrochromism – coloring upon oxidation – with rapid bleaching process (1 s upon necessary potential application). Anodic coloration is observed in the whole visible light spectrum, as well as in near IR region up to 1100 nm. Obtained data show high prospects for approach to formation of V2O5-based films using vanadyl acetylacetonate as precursor and application of such films as components of smart windows and displays, optical properties of which could be controlled by electrical current application.
About the authors
P. Y. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
A. S. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
References
- Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- Ataalla M., Afify A.S., Hassan M. et al. // J. Non-Cryst. Solids. 2018. V. 491. P. 43. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
- Wojcik P.J., Santos L., Pereira L. et al. // Nanoscale. 2015. V. 7. № 5. P. 1696. https://doi.org/10.1039/c4nr05765a
- Wen R.T., Niklasson G.A., Granqvist C.G. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9319. https://doi.org/10.1021/acsami.5b01715
- Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C: Mater. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
- Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
- Xiong C., Aliev A.E., Gnade B. et al. // ACS Nano. 2008. V. 2. № 2. P. 293. https://doi.org/10.1021/nn700261c
- Scherer M.R.J., Li L., Cunha P.M.S. et al. // Adv. Mater. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
- Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- Mjejri I., Gaudon M., Rougier A. // Sol. Energy Mater. Sol. Cells. 2019. V. 198. № December 2018. P. 19. https://doi.org/10.1016/j.solmat.2019.04.010
- Kozlov D.A., Kozlova T.O., Shcherbakov A.B. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 1088. https://doi.org/10.1134/S003602362007013X
- Parshina L.S., Novodvorsky O.A. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1234. https://doi.org/10.1134/S0036023621080209
- Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C: Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- Gorobtsov F.Yu., Simonenko T.L., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1094. https://doi.org/10.1134/S0036023622070105
- Liu Q., Li Z.F., Liu Y. et al. // Nat. Commun. 2015. V. 6. P. 6127. https://doi.org/10.1038/ncomms7127
- Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. P. 033710. https://doi.org/10.1063/1.361139
- Chen C.P., Chen Y.D., Chuang S.C. // Adv. Mater. 2011. V. 23. № 33. P. 3859. https://doi.org/10.1002/adma.201102142
- Matamura Y., Ikenoue T., Miyake M. et al. // Sol. Energy Mater. Sol. Cells. 2021. V. 230. P. 111287. https://doi.org/10.1016/j.solmat.2021.111287
- Piccirillo C., Binions R., Parkin I.P. // Chem. Vap. Deposition. 2007. V. 13. № 4. P. 145. https://doi.org/10.1002/cvde.200606540
- Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1416. https://doi.org/10.1134/S0036023621090138
- Gorobtsov P.Yu., Simonenko T.L., Simonenko N.P. et al. // Colloids Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
- Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
- Gorobtsov P.Y., Fisenko N.A., Solovey V.R. et al. // Colloids Interface Sci. Commun. 2021. V. 43. P. 100452. https://doi.org/10.1016/j.colcom.2021.100452
- Zhou B., He D. // J. Raman Spectrosc. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
- Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectrosc. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
- Clauws P., Broeckx J., Vennik J. // Phys. Status Solidi B. 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
- Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta. 1983. V. 39A. № 7. P. 641. https://doi.org/10.1016/0584-8539(83)80040-3
- Schilbe P. // Physica B. 2002. V. 316-317. P. 600. https://doi.org/10.1016/S0921-4526(02)00584-7
- Wei J., Ji H., Guo W. et al. // Nat. Nanotechnol. 2012. V. 7. № 6. P. 357. https://doi.org/10.1038/nnano.2012.70
- Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. P. 4854. https://doi.org/10.1038/srep04854
- Botto I.L., Vassallo M.B., Baran E.J. et al. // Mater. Chem. Phys. 1997. V. 50. P. 267. https://doi.org/10.1016/S0254-0584(97)01940-8
- Bodurov G., Ivanova T., Abrashev M. et al. // Phys. Procedia. 2013. V. 46. P. 127. https://doi.org/10.1016/j.phpro.2013.07.054
- Vedeanu N., Cozar O., Stanescu R. et al. // J. Mol. Struct. 2013. V. 1044. P. 323. https://doi.org/10.1016/j.molstruc.2013.01.078
- Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C: Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys Compd. 2021. V. 878. P. 160303. https://doi.org/10.1016/j.jallcom.2021.160303
- Peng H., Sun W., Li Y. et al. // Nano Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- Vernardou D. // Coatings. 2017. V. 7. № 2. P. 24. https://doi.org/10.3390/coatings7020024
- Iida Y., Kaneko Y., Kanno Y. // J. Mater. Process. Technol. 2008. V. 197. № 1–3. P. 261. https://doi.org/10.1016/j.jmatprotec.2007.06.032
- Tong Z., Hao J., Zhang K. et al. // J. Mater. Chem. C: Mater. 2014. V. 2. № 18. P. 3651. https://doi.org/10.1039/c3tc32417f
- Jin A., Chen W., Zhu Q. et al. // Thin Solid Films. 2009. V. 517. № 6. P. 2023. https://doi.org/10.1016/j.tsf.2008.10.001
- Cholant C.M., Westphal T.M., Balboni R.D.C. et al. // J. Solid State Electrochem. 2017. V. 21. № 5. P. 1509. https://doi.org/10.1007/s10008-016-3491-1
- Patil C.E., Tarwal N.L., Jadhav P.R. et al. // Curr. Appl. Phys. 2014. V. 14. № 3. P. 389. https://doi.org/10.1016/j.cap.2013.12.014
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- Koo B.R., Bae J.W., Ahn H.J. // Ceram. Int. 2019. V. 45. № 9. P. 12325. https://doi.org/10.1016/j.ceramint.2019.03.148
- Surca A.K., Dražić G., Mihelčič M. // Sol. Energy Mater. Sol. Cells. 2019. V. 196. P. 185. https://doi.org/10.1016/j.solmat.2019.03.017
Supplementary files
