Effect Of The Composition Of The Etching System MF-HCl (M = Li+, Na+, NH4+) on the gas-sensitive properties of Ti3C2Tх/Tioх nanocomposites
- 作者: Simonenko E.P.1,2, Mokrushin A.S.1, Nagornov I.A.1, Sapronova V.M.1,2, Gorban Y.M.1,2, Gorobtsov P.Y.1, Simonenko T.L.1, Simonenko N.P.1, Kuznetsov N.T.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleev Russian University of Chemical Technology
- 期: 卷 69, 编号 4 (2024)
- 页面: 607-623
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666583
- DOI: https://doi.org/10.31857/S0044457X24040164
- EDN: https://elibrary.ru/ZXIYZG
- ID: 666583
如何引用文章
详细
The influence of the nature of MF-HCl etching systems (M = Li+, Na+, NH4+) on the process of synthesis of Ti3C2Tx MXenes on the basis of Ti3AlC2 MAX-phase, microstructure, phase purity, interlayer distance, composition of functional surface groups, thermal behavior and yield of the obtained products has been studied. The room temperature sensing properties of Ti3C2Tx receptor layers deposited by microplotter printing were studied with respect to a wide range of gas analytes (H2, CO, NH3, NO2, NO2, O2, benzene, acetone, methane and ethanol). Increased sensitivity to ammonia was revealed for the MXenes obtained by exposure to hydrochloric acid solutions of sodium and ammonium fluorides and to carbon monoxide for the sample synthesized using the LiF-HCl system. High responses (~20–30% to 100 ppm NO2) were observed for all three receptor materials, but sensor recovery processes were significantly hampered. To improve the sensing characteristics, Ti3C2Tx sensing layers were subjected to relatively low-temperature heat treatment in an air atmosphere to form Ti3C2Tx/TiOx nanocomposites. It was found that a high and selective oxygen response at very low operating temperatures (125-175°C) was observed for the MXenes partially oxidized, which is particularly characteristic of the material produced using the HCl-NaF system.
作者简介
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology
编辑信件的主要联系方式.
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047
A. Mokrushin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
I. Nagornov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
V. Sapronova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047
Yu. Gorban
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991
参考
- Zhang J., Qin Z., Zeng D. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 9. P. 6313. https://doi.org/10.1039/C6CP07799D
- Wang H., Ma J., Zhang J. et al. // J. Phys.: Condens. Matter. 2021. V. 33. № 30. P. 303001. https://doi.org/10.1088/1361-648X/abf477
- Peterson P., Aujla A., Grant K. et al. // Sensors. 2017. V. 17. № 7. P. 1653. https://doi.org/10.3390/s17071653
- De Vito S., Massera E., Piga M. et al. // Sens. Actuators, B: Chem. 2008. V. 129. № 2. P. 750. https://doi.org/10.1016/j.snb.2007.09.060
- Mahajan S., Jagtap S. // J. Electron. Mater. 2021. V. 50. № 5. P. 2531. https://doi.org/10.1007/s11664-021-08761-7
- Mishra A., Basu S., Shetti N.P. et al. // J. Mater. Sci. - Mater. Electron. 2019. V. 30. № 9. P. 8160. https://doi.org/10.1007/s10854-019-01232-0
- Reddy B.K.S., Borse P.H. // J. Electrochem. Soc. 2021. V. 168. № 5. P. 057521. https://doi.org/10.1149/1945-7111/abf4ea
- Chai H., Zheng Z., Liu K. et al. // IEEE Sens. J. 2022. V. 22. № 6. P. 5470. https://doi.org/10.1109/JSEN.2022.3148264
- Nadargi D.Y., Umar A., Nadargi J.D. et al. // J. Mater. Sci. 2023. V. 58. № 2. P. 559. https://doi.org/10.1007/s10853-022-08072-0
- Wilson A. // Metabolites. 2015. V. 5. № 1. P. 140. https://doi.org/10.3390/metabo5010140
- van der Sar I.G., Wijbenga N., Nakshbandi G. et al. // Respir. Res. 2021. V. 22. № 1. P. 246. https://doi.org/10.1186/s12931-021-01835-4
- Licht J.-C., Grasemann H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9416. https://doi.org/10.3390/ijms21249416
- Liu C., Wang Q., Wang C. et al. // Trends Environ. Anal. Chem. 2023. V. 40. P. E00215. https://doi.org/10.1016/j.teac.2023.e00215
- Deshmukh K., Kovářík T., Khadheer Pasha S.K. // Coord. Chem. Rev. 2020. V. 424. P. 213514. https://doi.org/10.1016/j.ccr.2020.213514
- Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 5. P. 850. https://doi.org/10.3390/nano13050850
- Devaraj M., Rajendran S., Hoang T.K.A. et al. // Chemosphere. 2022. V. 302. P. 134933. https://doi.org/10.1016/j.chemosphere.2022.134933
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
- Choi S.-J., Kim I.-D. // Electron. Mater. Lett. 2018. V. 14. № 3. P. 221. https://doi.org/10.1007/s13391-018-0044-z
- Li Q., Li Y., Zeng W. // Chemosensors. 2021. V. 9. № 8. P. 225. https://doi.org/10.3390/chemosensors9080225
- Riazi H., Taghizadeh G., Soroush M. // ACS Omega. 2021. V. 6. № 17. P. 11103. https://doi.org/10.1021/acsomega.0c05828
- Ho D.H., Choi Y.Y., Jo S.B. et al. // Adv. Mater. 2021. V. 33. № 47. P. 2005846. https://doi.org/10.1002/adma.202005846
- Sivasankarapillai V.S., Sharma T.S.K., Hwa K.-Y. et al. // ES Energy Environ. 2022. https://doi.org/10.30919/esee8c618
- Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
- Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
- Khakbaz P., Moshayedi M., Hajian S. et al. // J. Phys. Chem. C. 2019. V. 123. № 49. P. 29794. https://doi.org/10.1021/acs.jpcc.9b09823
- Wu M., He M., Hu Q. et al. // ACS Sensors. 2019. V. 4. № 10. P. 2763. https://doi.org/10.1021/acssensors.9b01308
- Lee E., VahidMohammadi A., Prorok B.C. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 37184. https://doi.org/10.1021/acsami.7b11055
- Yang Z., Liu A., Wang C. et al. // ACS Sensors 2019. V. 4. № 5. P. 1261. https://doi.org/10.1021/acssensors.9b00127
- Alhabeb M., Maleski K., Anasori B. et al. // Chem. Mater. 2017. V. 29. № 18. P. 7633. https://doi.org/10.1021/acs.chemmater.7b02847
- Lipatov A., Alhabeb M., Lukatskaya M.R. et al. // Adv. Electron. Mater. 2016. V. 2. № 12. https://doi.org/10.1002/aelm.201600255
- Shayesteh Zeraati A., Mirkhani S.A., Sun P. et al. // Nanoscale. 2021. V. 13. № 6. P. 3572. https://doi.org/10.1039/D0NR06671K
- Yang M., Huang M., Li Y. et al. // Sens. Actuators, B: Chem. 2022. V. 364. P. 131867. https://doi.org/10.1016/j.snb.2022.131867
- Sinha A., Ma K., Zhao H. // J. Colloid Interface Sci. 2021. V. 590. P. 365. https://doi.org/10.1016/j.jcis.2021.01.063
- Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
- Kvashina T.S., Uvarov N.F., Korchagin M.A. et al. // Mater. Today Proc. 2020. V. 31. P. 592. https://doi.org/10.1016/j.matpr.2020.07.107
- Wang L., Zhang H., Wang B. et al. // Electron. Mater. Lett. 2016. V. 12. № 5. P. 702. https://doi.org/10.1007/s13391-016-6088-z
- Liu F., Zhou A., Chen J. et al. // Appl. Surf. Sci. 2017. V. 416. P. 781. https://doi.org/10.1016/j.apsusc.2017.04.239
- Wang L., Liu D., Lian W. et al. // J. Mater. Res. Technol. 2020. V. 9. № 1. P. 984. https://doi.org/10.1016/j.jmrt.2019.11.038
- Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
- Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
- Choi J., Kim Y., Cho S. et al. // Adv. Funct. Mater. 2020. V. 30. № 40. P. 2003998. https://doi.org/10.1002/adfm.202003998
- Pazniak H., Plugin I.A., Loes M.J. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 4. P. 3195. https://doi.org/10.1021/acsanm.9b02223
- Kuang D., Wang L., Guo X. et al. // J. Hazard. Mater. 2021. V. 416. P. 126171. https://doi.org/10.1016/j.jhazmat.2021.126171
- Liu S., Wang M., Liu G. et al. // Appl. Surf. Sci. 2021. V. 567. P. 150747. https://doi.org/10.1016/j.apsusc.2021.150747
- Zhang D., Yu S., Wang X. et al. // J. Hazard. Mater. 2022. V. 423. P. 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
- Zhou Y., Wang Y., Wang Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. P. 56485. https://doi.org/10.1021/acsami.1c17429
- Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
- Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
- Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- Simonenko N.P., Fisenko N.A., Fedorov F.S. et al. // Sensors (Switzerland). 2022. V. 22. № 3247. P. 1. https://doi.org/10.3390/s22093473
- Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 4. P. 445. https://doi.org/10.3390/bios13040445
- Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- Lane N.J., Vogel S.C., Caspi E.N. et al. // J. Appl. Phys. 2013. V. 113. № 18. https://doi.org/10.1063/1.4803700
- Aigner K., Lengauer W., Rafaja D. et al. // J. Alloys Compd. 1994. V. 215. № 1–2. P. 121. https://doi.org/10.1016/0925-8388(94)90828-1
- Liu F., Zhou J., Wang S. et al. // J. Electrochem. Soc. 2017. V. 164. № 4. P. A709. https://doi.org/10.1149/2.0641704jes
- Qi Q., Zhang W.Z., Shi L.Q. et al. // Thin Solid Films. 2012. V. 520. № 23. P. 6882. h ttps://doi.org/10.1016/j.tsf.2012.07.040
- Lioi D.B., Neher G., Heckler J.E. et al. // ACS Appl. Nano Mater. 2019. V. 2. № 10. P. 6087. https://doi.org/10.1021/acsanm.9b01194
- Peng M., Wu Z., Wei W. et al. // Adv. Mater. Interfaces. 2022. V. 9. № 18. Р. 2102418. https://doi.org/10.1002/admi.202102418
- Hildenbrand V.D., Fuess H., Pfaff G. et al. // Z. Phys. Chem. 1996. V. 194. № 2. P. 139. https://doi.org/10.1524/zpch.1996.194.Part_2.139
- Hart J.L., Hantanasirisakul K., Lang A.C. et al. // Nat. Commun. 2019. V. 10. № 1. P. 522. https://doi.org/10.1038/s41467-018-08169-8
- Jing H., Lyu B., Tang Y. et al. // Small Sci. 2022. V. 2. № 11. https://doi.org/10.1002/smsc.202200057
- Hou C., Yu H., Huang C. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11549. https://doi.org/10.1039/C9TC03415C
- Ma R., Fukuda K., Sasaki T. et al. // J. Phys. Chem. B. 2005. V. 109. № 13. P. 6210. https://doi.org/10.1021/jp044282r
- Ma H.L., Yang J.Y., Dai Y. et al. // Appl. Surf. Sci. 2007. V. 253. № 18. P. 7497. https://doi.org/10.1016/j.apsusc.2007.03.047
- Mokrushin A.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/j.apsusc.2018.08.208
- Simonenko E.P., Mokrushin A.S., Simonenko N.P. et al. // Thin Solid Films. 2019. V. 670. P. 46. https://doi.org/10.1016/j.tsf.2018.12.004
- Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. P. 159090. https://doi.org/10.1016/j.jallcom.2021.159090
补充文件
