Effect Of The Composition Of The Etching System MF-HCl (M = Li+, Na+, NH4+) on the gas-sensitive properties of Ti3C2Tх/Tioх nanocomposites

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of the nature of MF-HCl etching systems (M = Li+, Na+, NH4+) on the process of synthesis of Ti3C2Tx MXenes on the basis of Ti3AlC2 MAX-phase, microstructure, phase purity, interlayer distance, composition of functional surface groups, thermal behavior and yield of the obtained products has been studied. The room temperature sensing properties of Ti3C2Tx receptor layers deposited by microplotter printing were studied with respect to a wide range of gas analytes (H2, CO, NH3, NO2, NO2, O2, benzene, acetone, methane and ethanol). Increased sensitivity to ammonia was revealed for the MXenes obtained by exposure to hydrochloric acid solutions of sodium and ammonium fluorides and to carbon monoxide for the sample synthesized using the LiF-HCl system. High responses (~20–30% to 100 ppm NO2) were observed for all three receptor materials, but sensor recovery processes were significantly hampered. To improve the sensing characteristics, Ti3C2Tx sensing layers were subjected to relatively low-temperature heat treatment in an air atmosphere to form Ti3C2Tx/TiOx nanocomposites. It was found that a high and selective oxygen response at very low operating temperatures (125-175°C) was observed for the MXenes partially oxidized, which is particularly characteristic of the material produced using the HCl-NaF system.

作者简介

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology

编辑信件的主要联系方式.
Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047

A. Mokrushin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

I. Nagornov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

V. Sapronova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047

Yu. Gorban

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; D.I. Mendeleev Russian University of Chemical Technology

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991; Moscow, 125047

Ph. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

T. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: ep_simonenko@mail.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Zhang J., Qin Z., Zeng D. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 9. P. 6313. https://doi.org/10.1039/C6CP07799D
  2. Wang H., Ma J., Zhang J. et al. // J. Phys.: Condens. Matter. 2021. V. 33. № 30. P. 303001. https://doi.org/10.1088/1361-648X/abf477
  3. Peterson P., Aujla A., Grant K. et al. // Sensors. 2017. V. 17. № 7. P. 1653. https://doi.org/10.3390/s17071653
  4. De Vito S., Massera E., Piga M. et al. // Sens. Actuators, B: Chem. 2008. V. 129. № 2. P. 750. https://doi.org/10.1016/j.snb.2007.09.060
  5. Mahajan S., Jagtap S. // J. Electron. Mater. 2021. V. 50. № 5. P. 2531. https://doi.org/10.1007/s11664-021-08761-7
  6. Mishra A., Basu S., Shetti N.P. et al. // J. Mater. Sci. - Mater. Electron. 2019. V. 30. № 9. P. 8160. https://doi.org/10.1007/s10854-019-01232-0
  7. Reddy B.K.S., Borse P.H. // J. Electrochem. Soc. 2021. V. 168. № 5. P. 057521. https://doi.org/10.1149/1945-7111/abf4ea
  8. Chai H., Zheng Z., Liu K. et al. // IEEE Sens. J. 2022. V. 22. № 6. P. 5470. https://doi.org/10.1109/JSEN.2022.3148264
  9. Nadargi D.Y., Umar A., Nadargi J.D. et al. // J. Mater. Sci. 2023. V. 58. № 2. P. 559. https://doi.org/10.1007/s10853-022-08072-0
  10. Wilson A. // Metabolites. 2015. V. 5. № 1. P. 140. https://doi.org/10.3390/metabo5010140
  11. van der Sar I.G., Wijbenga N., Nakshbandi G. et al. // Respir. Res. 2021. V. 22. № 1. P. 246. https://doi.org/10.1186/s12931-021-01835-4
  12. Licht J.-C., Grasemann H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9416. https://doi.org/10.3390/ijms21249416
  13. Liu C., Wang Q., Wang C. et al. // Trends Environ. Anal. Chem. 2023. V. 40. P. E00215. https://doi.org/10.1016/j.teac.2023.e00215
  14. Deshmukh K., Kovářík T., Khadheer Pasha S.K. // Coord. Chem. Rev. 2020. V. 424. P. 213514. https://doi.org/10.1016/j.ccr.2020.213514
  15. Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 5. P. 850. https://doi.org/10.3390/nano13050850
  16. Devaraj M., Rajendran S., Hoang T.K.A. et al. // Chemosphere. 2022. V. 302. P. 134933. https://doi.org/10.1016/j.chemosphere.2022.134933
  17. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
  18. Choi S.-J., Kim I.-D. // Electron. Mater. Lett. 2018. V. 14. № 3. P. 221. https://doi.org/10.1007/s13391-018-0044-z
  19. Li Q., Li Y., Zeng W. // Chemosensors. 2021. V. 9. № 8. P. 225. https://doi.org/10.3390/chemosensors9080225
  20. Riazi H., Taghizadeh G., Soroush M. // ACS Omega. 2021. V. 6. № 17. P. 11103. https://doi.org/10.1021/acsomega.0c05828
  21. Ho D.H., Choi Y.Y., Jo S.B. et al. // Adv. Mater. 2021. V. 33. № 47. P. 2005846. https://doi.org/10.1002/adma.202005846
  22. Sivasankarapillai V.S., Sharma T.S.K., Hwa K.-Y. et al. // ES Energy Environ. 2022. https://doi.org/10.30919/esee8c618
  23. Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
  24. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
  25. Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
  26. Khakbaz P., Moshayedi M., Hajian S. et al. // J. Phys. Chem. C. 2019. V. 123. № 49. P. 29794. https://doi.org/10.1021/acs.jpcc.9b09823
  27. Wu M., He M., Hu Q. et al. // ACS Sensors. 2019. V. 4. № 10. P. 2763. https://doi.org/10.1021/acssensors.9b01308
  28. Lee E., VahidMohammadi A., Prorok B.C. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 37184. https://doi.org/10.1021/acsami.7b11055
  29. Yang Z., Liu A., Wang C. et al. // ACS Sensors 2019. V. 4. № 5. P. 1261. https://doi.org/10.1021/acssensors.9b00127
  30. Alhabeb M., Maleski K., Anasori B. et al. // Chem. Mater. 2017. V. 29. № 18. P. 7633. https://doi.org/10.1021/acs.chemmater.7b02847
  31. Lipatov A., Alhabeb M., Lukatskaya M.R. et al. // Adv. Electron. Mater. 2016. V. 2. № 12. https://doi.org/10.1002/aelm.201600255
  32. Shayesteh Zeraati A., Mirkhani S.A., Sun P. et al. // Nanoscale. 2021. V. 13. № 6. P. 3572. https://doi.org/10.1039/D0NR06671K
  33. Yang M., Huang M., Li Y. et al. // Sens. Actuators, B: Chem. 2022. V. 364. P. 131867. https://doi.org/10.1016/j.snb.2022.131867
  34. Sinha A., Ma K., Zhao H. // J. Colloid Interface Sci. 2021. V. 590. P. 365. https://doi.org/10.1016/j.jcis.2021.01.063
  35. Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
  36. Kvashina T.S., Uvarov N.F., Korchagin M.A. et al. // Mater. Today Proc. 2020. V. 31. P. 592. https://doi.org/10.1016/j.matpr.2020.07.107
  37. Wang L., Zhang H., Wang B. et al. // Electron. Mater. Lett. 2016. V. 12. № 5. P. 702. https://doi.org/10.1007/s13391-016-6088-z
  38. Liu F., Zhou A., Chen J. et al. // Appl. Surf. Sci. 2017. V. 416. P. 781. https://doi.org/10.1016/j.apsusc.2017.04.239
  39. Wang L., Liu D., Lian W. et al. // J. Mater. Res. Technol. 2020. V. 9. № 1. P. 984. https://doi.org/10.1016/j.jmrt.2019.11.038
  40. Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
  41. Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
  42. Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
  43. Choi J., Kim Y., Cho S. et al. // Adv. Funct. Mater. 2020. V. 30. № 40. P. 2003998. https://doi.org/10.1002/adfm.202003998
  44. Pazniak H., Plugin I.A., Loes M.J. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 4. P. 3195. https://doi.org/10.1021/acsanm.9b02223
  45. Kuang D., Wang L., Guo X. et al. // J. Hazard. Mater. 2021. V. 416. P. 126171. https://doi.org/10.1016/j.jhazmat.2021.126171
  46. Liu S., Wang M., Liu G. et al. // Appl. Surf. Sci. 2021. V. 567. P. 150747. https://doi.org/10.1016/j.apsusc.2021.150747
  47. Zhang D., Yu S., Wang X. et al. // J. Hazard. Mater. 2022. V. 423. P. 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
  48. Zhou Y., Wang Y., Wang Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. P. 56485. https://doi.org/10.1021/acsami.1c17429
  49. Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
  50. Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
  51. Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
  52. Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
  53. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  54. Simonenko N.P., Fisenko N.A., Fedorov F.S. et al. // Sensors (Switzerland). 2022. V. 22. № 3247. P. 1. https://doi.org/10.3390/s22093473
  55. Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 4. P. 445. https://doi.org/10.3390/bios13040445
  56. Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
  57. Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
  58. Lane N.J., Vogel S.C., Caspi E.N. et al. // J. Appl. Phys. 2013. V. 113. № 18. https://doi.org/10.1063/1.4803700
  59. Aigner K., Lengauer W., Rafaja D. et al. // J. Alloys Compd. 1994. V. 215. № 1–2. P. 121. https://doi.org/10.1016/0925-8388(94)90828-1
  60. Liu F., Zhou J., Wang S. et al. // J. Electrochem. Soc. 2017. V. 164. № 4. P. A709. https://doi.org/10.1149/2.0641704jes
  61. Qi Q., Zhang W.Z., Shi L.Q. et al. // Thin Solid Films. 2012. V. 520. № 23. P. 6882. h ttps://doi.org/10.1016/j.tsf.2012.07.040
  62. Lioi D.B., Neher G., Heckler J.E. et al. // ACS Appl. Nano Mater. 2019. V. 2. № 10. P. 6087. https://doi.org/10.1021/acsanm.9b01194
  63. Peng M., Wu Z., Wei W. et al. // Adv. Mater. Interfaces. 2022. V. 9. № 18. Р. 2102418. https://doi.org/10.1002/admi.202102418
  64. Hildenbrand V.D., Fuess H., Pfaff G. et al. // Z. Phys. Chem. 1996. V. 194. № 2. P. 139. https://doi.org/10.1524/zpch.1996.194.Part_2.139
  65. Hart J.L., Hantanasirisakul K., Lang A.C. et al. // Nat. Commun. 2019. V. 10. № 1. P. 522. https://doi.org/10.1038/s41467-018-08169-8
  66. Jing H., Lyu B., Tang Y. et al. // Small Sci. 2022. V. 2. № 11. https://doi.org/10.1002/smsc.202200057
  67. Hou C., Yu H., Huang C. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11549. https://doi.org/10.1039/C9TC03415C
  68. Ma R., Fukuda K., Sasaki T. et al. // J. Phys. Chem. B. 2005. V. 109. № 13. P. 6210. https://doi.org/10.1021/jp044282r
  69. Ma H.L., Yang J.Y., Dai Y. et al. // Appl. Surf. Sci. 2007. V. 253. № 18. P. 7497. https://doi.org/10.1016/j.apsusc.2007.03.047
  70. Mokrushin A.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/j.apsusc.2018.08.208
  71. Simonenko E.P., Mokrushin A.S., Simonenko N.P. et al. // Thin Solid Films. 2019. V. 670. P. 46. https://doi.org/10.1016/j.tsf.2018.12.004
  72. Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. P. 159090. https://doi.org/10.1016/j.jallcom.2021.159090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024