Functional Design Of Peroral Delivery Systems Based On Polymethylsesquoxane Hydrogels For The Therapy Of Iron Deficiency Anemia
- Authors: Orlova P.D.1, Meshkov I.B.2, Latipov E.V.3, Vasiliev S.G.4, Kalinina A.A.2, Muzafarov A.M.2, Le-Deygen I.M.1
-
Affiliations:
- Lomonosov Moscow State University
- Institute of synthetic polymer materials
- Institute of nanotechnology electronics
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry
- Issue: Vol 69, No 4 (2024)
- Pages: 581-593
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666578
- DOI: https://doi.org/10.31857/S0044457X24040143
- EDN: https://elibrary.ru/ZXPGRK
- ID: 666578
Cite item
Abstract
Anemia is a prevalent circulatory system illness that is severely harmful to patients. The development of novel oral delivery systems for iron compounds with enhanced biopharmaceutical properties is vital considering the severe side effects associated with oral medication use. We believe incorporating iron compounds to polymethylsilsesquioxane hydrogels is a promising approach. According to previously published materials, such a system should have great biocompatibility and a capacity for iron compounds, and it may be able to release contents into the intestine. This study investigated polymethysilsesquioxane hydrogels with varying silicate unit concentrations. Potential iron-containing medicines were iron(III) chloride (FeCl3∙6H2O)) and iron(II) D-gluconate. All hydrogels were found to have nearly 100% sorption activity for a saturated solution of FeCl3∙6H2O (0.27 M) during the experiment, but only around 30% sorption capacity was found for a saturated solution of D-gluconate (0.24 M). A specific field of study was the distribution of iron atoms within hydrogels. It has been established that the largest regions devoid of iron atoms are observed in a hydrogel with a maximum quantity of inorganic units. The outcomes provide opportunities for the precise engineering of polymer matrix structures for iron compound delivery.
Keywords
About the authors
P. D. Orlova
Lomonosov Moscow State University
Email: i.m.deygen@gmail.com
Faculty of fundamental physico-chemical engineering, Faculty of chemistry
Russian Federation, Moscow, 119991I. B. Meshkov
Institute of synthetic polymer materials
Email: i.m.deygen@gmail.com
Russian Federation, Moscow, 117393
E. V. Latipov
Institute of nanotechnology electronics
Email: i.m.deygen@gmail.com
Russian Federation, Moscow, 115487
S. G. Vasiliev
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry
Email: i.m.deygen@gmail.com
Russian Federation, Chernogolovka, 142432
A. A. Kalinina
Institute of synthetic polymer materials
Email: i.m.deygen@gmail.com
Russian Federation, Moscow, 117393
A. M. Muzafarov
Institute of synthetic polymer materials
Email: i.m.deygen@gmail.com
Russian Federation, Moscow, 117393
I. M. Le-Deygen
Lomonosov Moscow State University
Author for correspondence.
Email: i.m.deygen@gmail.com
Faculty of chemistry
Russian Federation, Moscow, 119991References
- Trivedi R., Barve K. // Int. J. Pharm. 2021. V. 601. P. 120590. https://doi.org/10.1016/j.ijpharm.2021.120590
- Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
- Singhal S.R., Kadian V., Singh S. et al. // IJOGR. 2015. V. 2. P. 155. https://doi.org/10.5958/2394-2754.2015.00005.3
- Laleli Koc B., Haydaroğlu Y. et al. // ACH Med. J. 2023. V. 2. P. 221. https://doi.org/10.5505/achmedj.2023.36855
- Martínez Francés A., Martínez-Bujanda J.J. // Curr. Med. Res. Opin. 2020. V. 36. P. 613. https://doi.org/10.1080/03007995.2020.1716702
- Gómez-Ramírez S., Brilli E., Tarantino G., Muñoz M. // Pharmaceuticals. 2018. V. 11. P. 40097. https://doi.org/10.3390/ph11040097
- Zhu A., Kaneshiro M., Kaunitz J.D. // Dig. Dis. Sci. 2010. V. 55. P. 548. https://doi.org/10.1007/s10620-009-1108-6
- Camaschella C. // Blood Rev. 2017. V. 31. P. 225. https://doi.org/10.1016/j.blre.2017.02.004
- Elstrott B., Khan L., Olson S. et al. // Eur. J. Haematol. 2020. V. 104. P. 153. https://doi.org/10.1111/ejh.13345
- Zakharova L.Y., Maganova F.I., Sinyashin K.O. et al. // Russ. J. Gen. Chem. 2023. V. 93. P. 1867. https://doi.org/10.1134/S1070363223070253
- Lin H.M., Deng S.G., Huang S.B. et al. // J. Sci. Food Agric. 2016. V. 96. P. 2839. https://doi.org/10.1002/jsfa.7452
- Кононова И.Н., Карева Е.Н. // РМЖ. Мать и дитя. 2022. №1. С. 18. https://doi.org/10.32364/2618-8430-2022-5-1-18-27
- Fathy M.M., Fahmy H.M., Balah A.M.M. et al. // Life Sci. 2019. V. 234. P. 116787. https://doi.org/10.1016/j.lfs.2019.116787
- Zvereva M.V., Aleksandrova G.P. // Russ. J. Gen. Chem. 2023. V. 93. P. 347. https://doi.org/10.1134/S1070363223140141
- Cui J., Li Y., Yu P. et al. // Int. J. Biol. Macromol. 2018. V. 108. P. 412. https://doi.org/10.1016/j.ijbiomac.2017.12.033
- Wang P.P., Zhang Y., Dai L.Q. et al. // Chin. J. Integr. Med. 2007. V. 13. P. 297. https://doi.org/10.1007/s11655-007-0297-0
- Rahul B.S., Lakshmi S., Sneha Letha S. et al. // Colloids Surf., B: Biointerfaces. 2020. V. 195. P. 111247. https://doi.org/10.1016/j.colsurfb.2020.111247
- Massana Roquero D., Othman A. et al. // Mater. Adv. 2022. V. 3. P. 1849. https://doi.org/10.1039/d1ma00959a
- Park S.H., Kim R.S., Stiles W.R. et al. // Adv. Sci. 2022. V. 9. P. 872. https://doi.org/10.1002/advs.202200872
- Diab R., Canilho N., Pavel I.A. et al. // Adv. Colloid Interface Sci. 2017. V. 249. P. 346. https://doi.org/10.1016/j.cis.2017.04.005
- Abbasi F., Mirzadeh H., Katbab A.A. // Polym. Int. 2021. V. 50. P. 1279. https://doi.org/10.1002/pi.783
- Kon’kova T.V., Gordienko M.G., Alekhina M.B., Men’Shutina N.V. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1214. https://doi.org/10.1134/S0036023614110114
- Dolinina E.S., Parfenyuk E.V. // Russ. J. Inorg. Chem. 2022. V. 67. P. 401. https://doi.org/10.1134/S0036023622030068
- Ciprioti S.V., Naviglio D., Gallo M. et al. // Macromol. Symp. 2020. V. 389. P. 84. https://doi.org/10.1002/masy.201900084
- Pat. UA 27434. 1994.
- Howell C.A., Mikhalovsky S.V., Markaryan E.N., Khovanov A.V. // Scientific Reports. 2019. V. 9. № 1. P. 5629. https://doi.org/10.1038/s41598-019-42176-z
- Meshkov I.B., Mazhorova N.G., Zhemchugov P.V. et al. // INEOS Open. 2019. V. 2. P. 140. https://doi.org/10.32931/io1920a
- Protsak I.S., Morozov Y.M., Dong W. et al. // Nanoscale Res. Lett. 2019. V. 14. P. 160. https://doi.org/10.1186/s11671-019-2982-2
- Kloprogge J.T., Frost R.L. // Vibr. Spectrosc. 2000. V. 23. P. 119. https://doi.org/10.1016/S0924-2031(00)00056-4
- Faustova Z.V., Slizhov Y.G. // Inorg. Mater. 2017. V. 53. P. 287. https://doi.org/10.1134/S0020168517030050
- Skuredina A.A., Danilov M.R., Le-Deygen I.M., Kudryashova E.V. // Moscow University Chemistry Bulletin. 2018. V. 73. P. 192. https://doi.org/10.3103/S0027131418040107
- Ohta K.M., Fuji M., Takei T., Chikazawa M. // Eur. J. Pharm. Sci. 2005. V. 26. P. 87. https://doi.org/10.1016/j.ejps.2005.05.002
- Nikolic V., Ilic D., Nikolic L. et al. // Savremene Tehnologije. 2014. V. 3. P. 16. https://doi.org/10.5937/savteh1402016N
- Kurczewska J., Schroeder G. Cent. // Eur. J. Chem. 2011. V. 9. P. 41. https://doi.org/10.2478/s11532-010-0131-y
- Wang J., Zhou Q., Song D. et al. // Sci. Technol. 2015. V. 76. P. 501. https://doi.org/10.1007/s10971-015-3800-7
- Catauro M., Naviglio D., Risoluti R. et al. // J. Therm. Anal. Calorim. 2018. V. 133. P. 1085. https://doi.org/10.1007/s10973-018-7137-7
Supplementary files
