Features of the Structure and Thermal Properties of LnBWO6 (La = Ln, La0.999Nd0.001, La0.99Gd0.01) Synthesized by the Sol-Gel Method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Borate tungstates LnBWO6 (Ln = La, La0.999Nd0.001, La0.99Gd0.01) were synthesized by the Pechini method with subsequent annealing of intermediates. They were analyzed by X-ray diffraction (XRD) and DSC methods. Crystallographic parameters of synthesized LnBWO6 were refined by powder X-ray diffraction in two systems: monoclinic, space group P21, and orthorhombic, space group P222. The presence of reversible first-order phase transitions in synthesized LnBWO6 was detected using the DSC method, and the temperatures and enthalpies of phase transformations were determined. It has been shown that Nd3+ and Gd3+ dopants lowers the L- → H- phase transition temperature of LaBWO6. According to experimental electron paramagnetic resonance (EPR) data gadolinium has two independent positions in the La0.99Gd0.01BWO6 structure.

作者简介

V. Krut’ko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

M. Komova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

R. Svetogorov

National Research Center “Kurchatov Institute”

Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 123182

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

E. Ugolkova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kroutko@igic.ras.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Lu-Ling Li, Xiao-Yu Yue, Wen-Jing Zhang et al. // Chin. Phys. B. 2021. V. 30. P. 916. https://doi.org/10.1088/1674-1056/abf 916
  2. Dai J., Zhao D., Zhang R.J. et al. //J. Alloys Compd. 2022. P. 891. https://doi.org/ 10.1016/j.jallcom.2021.161973
  3. Jin X.Y., Xie Y., Tang R. et al. //J. Alloys Compd. 2022. P. 899. https://doi.org/10.1016/j.jallcom.2021.162739
  4. Flavián D., Nagl J., Hayashida S. et al. // Phys. Rev. B. 2023. V. 107. P. 174406. https://doi.org/10.1103/PhysRevB.107.174406
  5. Крутько В.А., Комова М.Г., Поминова Д.В. // Неорган. материалы. 2018. Т. 54. № 11. С. 1210. https://doi.org/10.1134/S0002337X1811009X
  6. Sun C.X., Lin Z.B., Zhang L.Z. et al. //Chin. J. Struct. Chem. 2013. V. 32. P. 1088. https://www.researchgate.net/publication/283843691
  7. Kaminskii A.A. // Quantum Electronics. 2019. V. 49. P. 377. https://doi.org/10.1070/QEL16980
  8. Xiong F.B., Chen H., Lin H.F. et al. // J. Lumin. 2019. V. 209. P. 89. https://doi.org/10.1016/j.jlumin.2019.01.034]
  9. Крутько В.А., Комова М.Г., Поминова Д.В. и др. //Неорган. материалы. 2023. Т. 59. № 9. https://doi.org/10.31857/S0002337X23090087
  10. Li B., Huang X., Guo H. et al. // Dyes and Pigments. 2018. V. 150. P. 67. https:// doi.org/10.1016/j.dyepig.2017.11.003
  11. Xiong F.B., Lin H.F., Ma Z. et al. // Opt. Mater. 2017. V. 66. P. 474. https://doi.org/10.1016/j.optmat.2017.03.002
  12. Gancheva M., Aleksandrov L., Iordanova R. et al. // J. Chem. Technol. Metallurgy. 2015. V. 50. P. 467.
  13. Aleksandrov L., Komatsu T., Shinozaki K. et al. // J. Non-Cryst. Solids. 2015. V. 429. P. 171. https://doi.org/10.1016/j.jnoncrysol.2015.09.004
  14. Zhu D., Mu Z. // Displays. 2014. V. 35. P. 261. https://doi.org/10.1016/j.displa.2014.09.005
  15. Aleksandrov L., Iordanova R., Dimitriev Y. et al. // Opt. Mater. 2014. V. 36. P. 1366. https:// doi.org/10.1016/j.optmat.2014.03.031
  16. Huang Y., Seo H.J. // Mater. Lett. 2012. V. 84. P.107. https://doi.org/10.1016/j.matlet.2012.06.051
  17. Джуринский Б.Ф., Резник Е.М., Тананаев И.В. // Журн. неорган. химии. 1980. Т. 25. № 11. С. 2981.
  18. Палкина К.К., Сайфуддинов В.З., Кузнецов В.Г. и др. // Журн. неорган. химии. 1979. Т. 24. № 5. С. 1193.
  19. Джуринский Б.Ф., Лысанова Г.В. // Журн. неорган. химии. 1998. Т. 43. № 12. С. 2065.
  20. Aleksandrov L., Komatsu T., Iordanova R. et al. //Opt. Mater. 2011. V. 34. P. 201. https://doi.org/10.1016/j.optmat.2011.08.002
  21. Becker P., van der Wolf B., Bohat´y L. et al. //Laser Phys. Lett. 2008. V. 5. P. 737. https://doi.org/10.1002/lapl.200810056
  22. Zhao W., Zhang L., Wang G. et al. // Opt. Mater. 2009. V. 31. P. 849. https://doi.org/10.1016/j.optmat.2008.09.010
  23. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  24. Светогоров Р.Д. // Авторское свидетельство о государственной регистрации права № 2018660965.
  25. Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  26. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
  27. Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Пер. с англ. М.: Мир, 1972. Т. 1. 651 с.; Т. 2. 349 с.
  28. lford G.G., Belford R.L., Burkhaven J.F. // J. Magn. Reson. 1973. V. 11. P. 251.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024