Computer simulation of the properties and structure of crystalline 1,6-closo-carborane (С2B4)n
- Authors: Zaitsev S.А.1, Zaitseva Y.I.1, Getmanskiy I.V.1, Minyaev R.М.1
-
Affiliations:
- Southern Federal University
- Issue: Vol 69, No 5 (2024)
- Pages: 751-756
- Section: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666543
- DOI: https://doi.org/10.31857/S0044457X24050133
- EDN: https://elibrary.ru/YEOZYV
- ID: 666543
Cite item
Abstract
The structure and properties of a three-dimensional crystal consisting of 1,6-closo-carborane have been studied using quantum chemical methods with calculations in the approximation of functional density theory and the imposition of periodic boundary conditions. Calculations of the phonon energy spectrum and electronic band structure showed that the 3D crystal is structurally stable and belongs to an indirect gap semiconductor with a band gap of ~1.44 eV. The calculated parameters of mechanical properties showed that the hardness has the same values (21.8 GPa and 25.2 GPa) according to each method of theoretical evaluation of hardness, Young’s modulus is equal to 97.24 GPa and 242.90 GPa, respectively.
About the authors
S. А. Zaitsev
Southern Federal University
Author for correspondence.
Email: stzaycev@sfedu.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonYu. I. Zaitseva
Southern Federal University
Email: stzaycev@sfedu.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonI. V. Getmanskiy
Southern Federal University
Email: stzaycev@sfedu.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonR. М. Minyaev
Southern Federal University
Email: stzaycev@sfedu.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonReferences
- Meyer J., Geim A.K., Katsnelson M.I. et al. // Nature. 2007. V. 446. № 7131. P. 60.https://doi.org/10.1038/nature05545
- Sofo J.O., Chaudhari A.S., Barber G.D. // Phys. Rev. B. 2007. V. 75. № 15. P. 153401. https://doi.org/10.1103/PhysRevB.75.153401
- Zhong M., Xu D., Yu X et al. // Nano Energy. 2016. V. 28. P. 12. https://doi.org/10.1016/j.nanoen.2016.08.031
- Peng B., Zhang H., Shao H. et al. // J. Mater. Chem. C. 2016. V. 4. P. 3592. https://doi.org/10.1039/C6TC00115G
- Jiang J.W., Park H.S. // Nat. Commun. 2014. V. 5. P. 4727. https://doi.org/10.1038/ncomms5727
- Tkachenko N.V., Steglenko D.V., Fedik N.S. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 19764. https://doi.org/10.1039/C9CP03786A
- Zaitsev S.A., Steglenko D.V., Minyaev R.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 6. P. 780. https://doi.org/10.1134/S0036023619060172
- Ghiasi R., Tale R., Daneshdoost V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 753. https://doi.org/10.1134/S003602362360003X
- Sarvestani R.M.J., Ahmadi R., Yousefi M. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 761. https://doi.org/10.1134/S0036023623600107
- Neumolotov N.K., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1583. https://doi.org/10.1134/S0036023622600861
- Shmal’ko A.V., Sivaev I.B. // Russ. J. Inorg. Chem. 2019. V. 64. P. 1726. https://doi.org/10.1134/S0036023619140067
- Sheng X-L., Yan Q-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. № 15. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
- Zhang J., Wang R., Zhu X. et al. // Nature Commun. 2017. V. 8. № 1. P. 683. https://doi.org/10.1038/s41467-017-00817-9
- Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. № 40. P. 22187. https://doi.org/10.1021/acs.jpcc.7b07565
- Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 34. P. 10118. https://doi.org/10.1002/anie.201701225
- Getmanskii I.V., Minyaev R.M., Koval V.V. // Mendeleev Commun. 2018. V. 28. № 2. P. 173. https://doi.org/10.1016/j.mencom.2018.03.021
- Getmanskii I.V., Koval V.V., Boldyrev A.I. et al. // J. Comput. Chem. 2019. V. 40. № 20. P. 1861. https://doi.org/10.1002/jcc.25837
- Steglenko D.V., Zaitsev S.A., Minyaev R.M. // Russ. J. Inorg. Chem. 2019. V. 64. № 8. P. 1031. https://doi.org/10.1134/S0036023619080163
- Genady A.R. // Eur. J. Med. Chem. 2009. V. 44. P. 409. https://doi.org/10.1016/j.ejmech.2008.02.037
- Sharapov V.M., Mirnov S.V., Grashin S.A. et al. // J. Nucl. Mater. 1995. V. 220. P. 730. https://doi.org/10.1016/0022-3115(94)00575-3
- Мещеряков А.И., Акулина Д.К., Батанов Г.М. и др. // Физика плазмы. 2005. Т. 31. С. 496.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian Inc.: Wallingford CT, 2016.
- Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- Kresse G., Furthmuller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
- Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Perdew J.P., Ruzsinszky A., Csonka G.I. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Togo A., Chaput L., Tadano T. et al. // Phys. Rev. B. 2015. V. 91. № 9. P. 094306. https://doi.org/10.1103/PhysRevB.91.094306
- Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. P. 012001. https://doi.org/10.7566/JPSJ.92.012001
- Šimůnek A., Vackář J. // J. Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
- Liu Z.Y., Guo X., He J. et al. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
- Šimůnek A., Vackář J.A. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
- Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
- Li K.Y., Wang X.T., Zhang F.F. et al. // Phys. Rev. Lett. 2018. V. 100. P. 235504. https://doi.org/10.1103/PhysRevLett.100.235504
- Li K.Y., Xue D.F. // Chin. Sci. Bull. 2009. V. 54. P. 131. https://doi.org/10.1007/s11434-008-0550-8
- Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 654. https://www.chemcraftprog.com
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- McKee M.L. // J. Am. Chem. Soc. 1992. V. 114. № 3. P. 879. https://doi.org/10.1021/ja00029a012
- Minyaev R.M., Minkin V.I., Gribanova T.N. et al. // Mendeleev Commun. 2001. V. 11. № 4. P. 132. https://doi.org/10.1070/MC2001v011n04ABEH001475
- Mastryukov V.S., Dorofeeva O.V., Vilkov L.V. et al. // J. Chem. Soc. 1973. № 8. P. 276. https://doi.org/10.1039/C39730000276
- Hill R. // Proc. Phys. Soc. 1952. V. 65. № 5. P. 349. https://doi.org/10.1088/0370-1298/65/5/307
Supplementary files
