Structural variability of rare-earth bromide complexes with acetylurea

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New coordination compounds of light rare-earth (RE) bromides with acetylurea (AsUr) were synthesized, [Y(AcUr)2(H2O)4]1.39[Y(AcUr)2(H2O)5]0.61Br6·2H2O (I), [La(AcUr)2(H2O)5]Br3 (II), [Ce(AcUr)2(H2O)5]Br3 (III), [Nd(AcUr)2(H2O)5]Br3 (IV), [Sm(AcUr)2(H2O)5]Br3 (V); elemental analysis, IR spectroscopy and X-ray diffraction were used to determine their compositions and structural features. Compound I is built of the [Y(AcUr)2(H2O)4]3+ and [Y(AcUr)2(H2O)5]3+ cations in the 2.28 : 1; they differ by the number of the inner-sphere water molecules (4 and 5 for coordination numbers 8 and 9, respectively), non-coordinated Br ions and H2O molecules. Compounds II and III are built of the [Ln(AcUr)2(H2O)5]3+ (Ln = La, Ce) cations and outer-sphere Br ions. The structures changes on cooling from 296 K to 100 K being isostructural at both temperatures. Compounds IV and V have the same composition, but different structures. They also have different polymorphous modifications at 100 and 296 K. Samarium, terbium and dysprosium bromide complexes of acetyl urea show photoluminescence.

作者简介

P. Akulinin

MIREA — Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

俄罗斯联邦, Moscow

Е. Savinkina

MIREA — Russian Technological University

编辑信件的主要联系方式.
Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

俄罗斯联邦, Moscow

М. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: savinkina@mirea.ru
俄罗斯联邦, Moscow

Yu. Belousov

Lomonosov Moscow State University; Lebedev Physical Institute RAS

Email: savinkina@mirea.ru

Faculty of Chemistry

俄罗斯联邦, Moscow; Moscow

参考

  1. Shibasaki M., Yoshikawa N. // Chem. Rev. 2002. V. 102. № 6. P. 2187. https://doi.org/10.1021/cr010297z
  2. Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283. https://doi.org/10.1021/cr8003983
  3. Woodruff D.N., Winpenny R.E.P., Layfield R.A. // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
  4. Lanthanides, tantalum, and niobium: mineralogy, geochemistry, characteristics of primary ore deposits, prospecting, processing and applications. Proceedings of a workshop in Berlin, November 1986 / Eds. Möller P., Černý P., Saupé F. Berlin, Heidelberg: Springer-Verlag, 1989. 380 p.
  5. Seitz M., Oliver A.G., Raymond K.N. // J. Amer. Chem. Soc. 2007. V. 129. № 36. P. 11153. https://doi.org/10.1021/ja072750f
  6. Cotton S.A., Raithby P.R. // Coord. Chem. Rev. 2017. V. 340. P. 220. https://doi.org/10.1016/j.ccr.2017.01.011
  7. Cotton S. Lanthanide and actinide chemistry. John Wiley & Sons, 2013. 288 p.
  8. Cotton S.A. // Chimie. 2005. V. 8. № 2. P. 129. https://doi.org/10.1016/j.crci.2004.07.002
  9. Kim P., Anderko A., Navrotsky A., Riman R.E. // Minerals. 2018. V. 8. № 3. P. 106. https://doi.org/10.3390/min8030106
  10. Gumin´ski C., Voigt H., Zeng D. // Monatsh. Chem. 2011. V. 142. P. 211. https://doi.org/10.1007/s00706-011-0457-y
  11. Yin X., Wang Y., Bai X., et al. // Nat. Commun. 2017. V. 8. P. 14438. https://doi.org/10.1038/ncomms14438
  12. Savinkina E.V., Golubev D.V., Podgornov K.V., et al. // Z. Anorg. Allgem. Chem. 2013. V. 639. № 1. P. 53. https://doi.org/10.1002/zaac.201200267
  13. Аликберова Л.Ю., Альбов Д.В., Бушмелева А.С. и др. // Коорд. химия. 2014. Т. 40. № 12. С. 748.
  14. Isbjakowa A.S., Grigoriev M.S., Golubev D.V., Savinkina E.V. // J. Mol. Struct. 2020. V. 1201. №. 127141. https://doi.org/10.1016/j.molstruc.2019.127141
  15. Bushmeleva A.S., Alikberova L.Y., Albov D.V. // Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry. The 50th Anniversary of ICCBIC / Eds. Melník M., Segľa P., Tatarko M. Bratislava: Slovak Chemical Society, 2015. P. 27–40.
  16. Savinkina E.V., Akulinin P.V., Golubev D.V., Grigoriev M.S. // Polyhedron. 2021. V. 204. P. 115258. https://doi.org/10.1016/j.poly.2021.115258
  17. Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  18. Sheldrick G.M. // Acta Crystallogr. Sect. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  19. Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  20. Bünzli J.-C.G., Eliseeva S.V. // Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects / Eds. Hänninen P., Härmä H. Berlin, Heidelberg: Springer-Verlag, 2011. P. 1.
  21. Kimura T., Kato Y. // J. Alloys Compd. 1998. V. 275. P. 806. https://doi.org/10.1016/S0925-8388(98)00446-0
  22. Kiskin M.A., Taydakov I.V., Metlin M.T. et al. // Dye. Pigment. 2022. V. 199. № 110078. https://doi.org/10.1016/j.dyepig.2021.110078
  23. Feng X., Li S.-H., Wang L-Y. et al. // CrystEngComm. 2012. V. 14. № 10. P. 3684. https://doi.org/10.1039/C2CE06151A
  24. Savinkina E.V., Golubev D.V., Grigoriev M.S., Kornilov A. // J. Mol. Struct. 2021. V. 1227. №. 5. P. 129526. https://doi.org/10.1016/j.molstruc.2020.129526
  25. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. // Тонкие химические технологии. 2015. Т. 10. № 1. С. 66.
  26. Haddad S.F. // Acta Crystallogr. Sect. C. 1988. V. 44. № 5. P. 815. https://doi.org/10.1107/S010827018800054X
  27. Haddad S.F. // Acta Crystallogr. Sect. C. 1987. V. 43. № 10. P. 1882. https://doi.org/10.1107/S0108270187089753
  28. Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонкие химические технологии. 2022. Т. 17. № 2. С. 172.
  29. Заполоцкий Е.Н., Бабаилов С.П. // Известия АН. Сер. Химическая. 2022. Т. 71. № 10. С. 2165.
  30. Заполоцкий Е. Н., Бабайлов С. П. Журн. неорган. химии. 2022. T. 67. № 11. С. 1646.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024