Structural variability of rare-earth bromide complexes with acetylurea
- 作者: Akulinin P.V.1, Savinkina Е.V.1, Grigoriev М.S.2, Belousov Y.А.3,4
-
隶属关系:
- MIREA — Russian Technological University
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS
- Lomonosov Moscow State University
- Lebedev Physical Institute RAS
- 期: 卷 69, 编号 5 (2024)
- 页面: 727-735
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666539
- DOI: https://doi.org/10.31857/S0044457X24050102
- EDN: https://elibrary.ru/YEXFTM
- ID: 666539
如何引用文章
详细
New coordination compounds of light rare-earth (RE) bromides with acetylurea (AsUr) were synthesized, [Y(AcUr)2(H2O)4]1.39[Y(AcUr)2(H2O)5]0.61Br6·2H2O (I), [La(AcUr)2(H2O)5]Br3 (II), [Ce(AcUr)2(H2O)5]Br3 (III), [Nd(AcUr)2(H2O)5]Br3 (IV), [Sm(AcUr)2(H2O)5]Br3 (V); elemental analysis, IR spectroscopy and X-ray diffraction were used to determine their compositions and structural features. Compound I is built of the [Y(AcUr)2(H2O)4]3+ and [Y(AcUr)2(H2O)5]3+ cations in the 2.28 : 1; they differ by the number of the inner-sphere water molecules (4 and 5 for coordination numbers 8 and 9, respectively), non-coordinated Br— ions and H2O molecules. Compounds II and III are built of the [Ln(AcUr)2(H2O)5]3+ (Ln = La, Ce) cations and outer-sphere Br— ions. The structures changes on cooling from 296 K to 100 K being isostructural at both temperatures. Compounds IV and V have the same composition, but different structures. They also have different polymorphous modifications at 100 and 296 K. Samarium, terbium and dysprosium bromide complexes of acetyl urea show photoluminescence.
作者简介
P. Akulinin
MIREA — Russian Technological University
Email: savinkina@mirea.ru
Lomonosov Institute of Fine Chemical Technologies
俄罗斯联邦, MoscowЕ. Savinkina
MIREA — Russian Technological University
编辑信件的主要联系方式.
Email: savinkina@mirea.ru
Lomonosov Institute of Fine Chemical Technologies
俄罗斯联邦, MoscowМ. Grigoriev
Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Email: savinkina@mirea.ru
俄罗斯联邦, Moscow
Yu. Belousov
Lomonosov Moscow State University; Lebedev Physical Institute RAS
Email: savinkina@mirea.ru
Faculty of Chemistry
俄罗斯联邦, Moscow; Moscow参考
- Shibasaki M., Yoshikawa N. // Chem. Rev. 2002. V. 102. № 6. P. 2187. https://doi.org/10.1021/cr010297z
- Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283. https://doi.org/10.1021/cr8003983
- Woodruff D.N., Winpenny R.E.P., Layfield R.A. // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
- Lanthanides, tantalum, and niobium: mineralogy, geochemistry, characteristics of primary ore deposits, prospecting, processing and applications. Proceedings of a workshop in Berlin, November 1986 / Eds. Möller P., Černý P., Saupé F. Berlin, Heidelberg: Springer-Verlag, 1989. 380 p.
- Seitz M., Oliver A.G., Raymond K.N. // J. Amer. Chem. Soc. 2007. V. 129. № 36. P. 11153. https://doi.org/10.1021/ja072750f
- Cotton S.A., Raithby P.R. // Coord. Chem. Rev. 2017. V. 340. P. 220. https://doi.org/10.1016/j.ccr.2017.01.011
- Cotton S. Lanthanide and actinide chemistry. John Wiley & Sons, 2013. 288 p.
- Cotton S.A. // Chimie. 2005. V. 8. № 2. P. 129. https://doi.org/10.1016/j.crci.2004.07.002
- Kim P., Anderko A., Navrotsky A., Riman R.E. // Minerals. 2018. V. 8. № 3. P. 106. https://doi.org/10.3390/min8030106
- Gumin´ski C., Voigt H., Zeng D. // Monatsh. Chem. 2011. V. 142. P. 211. https://doi.org/10.1007/s00706-011-0457-y
- Yin X., Wang Y., Bai X., et al. // Nat. Commun. 2017. V. 8. P. 14438. https://doi.org/10.1038/ncomms14438
- Savinkina E.V., Golubev D.V., Podgornov K.V., et al. // Z. Anorg. Allgem. Chem. 2013. V. 639. № 1. P. 53. https://doi.org/10.1002/zaac.201200267
- Аликберова Л.Ю., Альбов Д.В., Бушмелева А.С. и др. // Коорд. химия. 2014. Т. 40. № 12. С. 748.
- Isbjakowa A.S., Grigoriev M.S., Golubev D.V., Savinkina E.V. // J. Mol. Struct. 2020. V. 1201. №. 127141. https://doi.org/10.1016/j.molstruc.2019.127141
- Bushmeleva A.S., Alikberova L.Y., Albov D.V. // Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry. The 50th Anniversary of ICCBIC / Eds. Melník M., Segľa P., Tatarko M. Bratislava: Slovak Chemical Society, 2015. P. 27–40.
- Savinkina E.V., Akulinin P.V., Golubev D.V., Grigoriev M.S. // Polyhedron. 2021. V. 204. P. 115258. https://doi.org/10.1016/j.poly.2021.115258
- Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr. Sect. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Bünzli J.-C.G., Eliseeva S.V. // Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects / Eds. Hänninen P., Härmä H. Berlin, Heidelberg: Springer-Verlag, 2011. P. 1.
- Kimura T., Kato Y. // J. Alloys Compd. 1998. V. 275. P. 806. https://doi.org/10.1016/S0925-8388(98)00446-0
- Kiskin M.A., Taydakov I.V., Metlin M.T. et al. // Dye. Pigment. 2022. V. 199. № 110078. https://doi.org/10.1016/j.dyepig.2021.110078
- Feng X., Li S.-H., Wang L-Y. et al. // CrystEngComm. 2012. V. 14. № 10. P. 3684. https://doi.org/10.1039/C2CE06151A
- Savinkina E.V., Golubev D.V., Grigoriev M.S., Kornilov A. // J. Mol. Struct. 2021. V. 1227. №. 5. P. 129526. https://doi.org/10.1016/j.molstruc.2020.129526
- Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. // Тонкие химические технологии. 2015. Т. 10. № 1. С. 66.
- Haddad S.F. // Acta Crystallogr. Sect. C. 1988. V. 44. № 5. P. 815. https://doi.org/10.1107/S010827018800054X
- Haddad S.F. // Acta Crystallogr. Sect. C. 1987. V. 43. № 10. P. 1882. https://doi.org/10.1107/S0108270187089753
- Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонкие химические технологии. 2022. Т. 17. № 2. С. 172.
- Заполоцкий Е.Н., Бабаилов С.П. // Известия АН. Сер. Химическая. 2022. Т. 71. № 10. С. 2165.
- Заполоцкий Е. Н., Бабайлов С. П. Журн. неорган. химии. 2022. T. 67. № 11. С. 1646.
补充文件
