Synthesis, structure and luminescence properties of a anion-substituted germanates Ca2La7.2Eu0.8(GeO4)6–x(PO4)xO2+x/2 with an apatite-type structure

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this research work is to study the effect of substitution in the anionic lattice of inorganic phosphors activated by Eu3+ ions with an apatite-type structure of [GeO4]4– by [PO4]3 groups on their luminescent and crystal chemical properties. A number of solid solutions with the general formula Ca2La7.2Eu0.8(GeO4)6–x(PO4)xO2+x/2–δ (1) have been synthesized. The reduction of Eu3+ to Eu2+ in the structure of synthesized crystal phosphors has been shown by methods of luminescent spectroscopy and electron paramagnetic resonance (EPR). For compounds with x = 0.18 and 0.48, the effect of the composition on the strength of the crystal field acting on Eu3+ ions is shown. The phonon sublattice was studied using IR and Raman spectroscopy methods. A decrease in the integral luminescence intensity is shown for the selected type of illumination. The obtained data can be used to create effective phosphors for such technological fields as the creation of scitillation detectors, television devices and photodiodes.

About the authors

А. А. Vasin

Institute of Solid State Chemistry UB RAS

Author for correspondence.
Email: andrey-htt@yandex.ru
Russian Federation, Ekaterinburg

М. G. Zuev

Institute of Solid State Chemistry UB RAS

Email: andrey-htt@yandex.ru
Russian Federation, Ekaterinburg

I. D. Popov

Institute of Solid State Chemistry UB RAS

Email: andrey-htt@yandex.ru
Russian Federation, Ekaterinburg

I. V. Baklanova

Institute of Solid State Chemistry UB RAS

Email: andrey-htt@yandex.ru
Russian Federation, Ekaterinburg

Е. V. Zabolotskaya

Institute of Solid State Chemistry UB RAS

Email: andrey-htt@yandex.ru
Russian Federation, Ekaterinburg

References

  1. Naveen Kumar A., Ramachandra Naik, Revathi V. et al. // Appl. Surf. Sci. 2023. V. 14. P. 100392. https://doi.org/10.1016/j.apsadv.2023.100392
  2. Krut’ko V.A., Komova M.G., Pominova D.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 14. P. 2256. https://doi.org/10.1134/S0036023622602069
  3. Kalusniak S., Castellano-Hernandez E., Yalзinoğlu H. et al. // Appl. Phys. B. 2022. V. 128. № 33. https://doi.org/10.1007/s00340-022-07759-1
  4. Nikitina Yu.O., Petrakova N.V., Demina A.Yu. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1067. https://doi.org/10.1134/S0036023621080179
  5. Никитина Ю.О., Петракова Н.В., Демина А.Ю. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 951. https://doi.org/10.31857/S0044457X21080171
  6. Qingfeng Guo, Libing Liao, Stefan Lis et al. // J. Lumin. 2018. V. 196. P. 285. https://doi.org/10.1016/j.jlumin.2017.12.051
  7. Ignjatović N.L., Mančić L., Vuković M. et al. // Sci. Rep. 2019. V. 9. P. 16305. https://doi.org/10.1038/s41598-019-52885-0
  8. Никофоров И.В., Дейнеко Д.В., Спасский Д.А. и др. // Неорган. материалы. 2019. Т. 55. С. 859. https://doi.org/10.1134/S0002337X19070121
  9. Rodrıguez-Garcı M.M., Ciric A., Ristic Z. et al. // J. Mater. Chem. C. 2021. V. 9. P. 7474. https://doi.org/10.1039/D1TC01330K
  10. Vijay Singh, Lakshminarayana G., Nimitha S. et al. // Optik. 2021. V. 227. P. 165935. https://doi.org/10.1016/j.ijleo.2020.165935
  11. Liu H., Liao L., Aksenov S.M. et al. // Ceram. Int. 2021. V. 47. № 16. P. 23300. https://doi.org/10.1016/j.ceramint.2021.05.043
  12. Sha Jiang, Xiaoxia Luo, Yingling Liu et al. // Mater. Res. Bull. 2018. V. 106. P. 428. https://doi.org/10.1016/j.materresbull.2018.06.038
  13. Ziwei Zhou, Niumiao Zhang, Jiayu Chen et al. // J. Ind. Eng. Chem. 2018. V. 65. P. 411. https://doi.org/10.1016/j.jiec.2018.05.014
  14. Thangavel Sakthivel, Liangling Sun, Balaji Devakumar et al. // RSC Adv. 2018. V. 8. P. 32948. https://doi.org/10.1039/C8RA06607H
  15. Shaoying Wang, Qi Sun, Balaji Devakumar et al. // J. Alloys Compd. 2019. V. 804. P. 93. https://doi.org/10.1016/j.jallcom.2019.06.388
  16. Lei Shi, Ya-jie Han, Zhi-xin Ji et al. // J. Mater. Sci-Mater. Electron. 2019. V. 30. P. 19561. https://doi.org/10.1007/s10854-019-02328-3
  17. Lipina O.A., Surat L.L., Tyutyunnik A.P. et al. // Chem. Phys. Lett. 2017. V. 667. P. 9. http://dx.doi.org/10.1016/j.cplett.2016.11.021
  18. Yu-Chun Li, Yen-Hwei Chang, Bin-Siang Tsai et al. // J. Alloys Compd. 2006. V. 416. P. 199. https://doi.org/10.1016/j.jallcom.2005.08.025
  19. Lii-Cherng Leu, Sherin Thomas, Mailadil Thomas Sebastian et al. // J. Am. Ceram. Soc. 2011. V. 94. № 8. P. 2625. https://doi.org/10.1111/j.1551-2916.2011.04388.x
  20. Denisova L.T., Molokeev M.S., Golubeva E.O, Galiakhmetova N.A. // J. Siberian Fed. Universe. 2022. V. 15. № 1. P. 128. https://doi.org/10.17516/1998-2836-0277
  21. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 8. С. 861. https://doi.org/10.31857/S0002337X22070089
  22. Vasin A.A., Zuev M.G., Zabolotskaya E.V. et al. // J. Lumin. 2015. V. 168. P. 26. https://doi.org/10.1016/j.jlumin.2015.07.019
  23. Teterskii A.V., Stefanovich S.Yu., Turova N.Ya. // Inorg. Mater. 2006. V. 42. № 5. P. 340. https://doi.org/10.1134/S0020168506030150
  24. Yuanyuan Zhang, Lefu Mei, Haikun Liu et al. // J. Rare Earths. 2023. V. 41. № 5. P. 673. https://doi.org/10.1016/j.jre.2022.05.013
  25. Ardhaoui K., Rogez J., Ben Chérifa A. et al. // J. Therm. Anal. Calorim. 2006. V. 86. № 2. P. 553. https://doi.org/10.1007/s10973-005-7369-1
  26. Ishchenko A.V., Zuev M.G., Vasin A.A. et al. // J. Lumin. 2016. V. 169. P. 137. https://doi.org/10.1016/j.jlumin.2015.09.003
  27. Jun Yang, Cuikun Lin, Chunxia Li et al. // J. Solid State Chem. 2009. V. 182. P. 1673. https://doi.org/10.1002/chin.200940010
  28. Zhihua Leng, Wei Yang, Weifeng Huang et al. // J. Lumin. 2019. V. 213. P. 133. https://doi.org/10.1016/j.jlumin.2019.05.020
  29. Stammeier J.A., Purgstaller B., Hippler D. et al. // Methods X. 2018. V. 5. P. 1241. https://doi.org/10.1016/j.mex.2018.09.015
  30. Taqiullah S.M., Thamraa Alshahrani, Mohammad Shariq et al. // J. Taibah University Sci. 2022. V. 16. № 1. P. 820. https://doi.org/10.1080/16583655.2022.2119770
  31. Chukova O., Nedilko S., Scherbatskyi V. // J. Lumin. 2010. V. 130. P. 1805. https://doi.org/10.1016/j.jlumin.2010.04.014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences