Synthesis of 1,10-disulfanyl-closo-decaborate anion and its tetraacetylamidedisulfonium derivative
- 作者: Golubev А.V.1, Baltovskaya D.V.1,2, Kubasov А.S.1, Bykov А.Y.1, Zhizhin К.Y.1, Kuznetsov N.Т.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry
- Mendeleev University of Chemical Technology of Russia
- 期: 卷 69, 编号 5 (2024)
- 页面: 686-695
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666528
- DOI: https://doi.org/10.31857/S0044457X24050052
- EDN: https://elibrary.ru/YFLVVM
- ID: 666528
如何引用文章
详细
A method has been proposed for the preparation of 1,10-disulfanyl-closo-decaborate anion [1,10-B10H8(SH)2]2-(3). This compound can be easily prepared in several steps. The first stage consists of selective introduction of the zwitterion of iodine at the apical vertices into the closo-decaborate anion (1,10-B10H8(IPh)2(1)). At the second stage, this group is replaced by thiodimethylformamide (1,10-B10H8(SCHNMe2)2(2)). At the last third stage, the resulting derivative undergoes hydrazinolysis at the substituted position with the formation of 1,10-disulfanyl-closo-decaborate anion. This compound in its reaction properties is very close to the substituted 2-sulfanyl-closo-decaborate anion at the equatorial position [2-B10H9(SH)]2-, which can easily undergo an alkylation reaction in the presence of a base. Bromoacetamide was used as an example, which made it possible to obtain a tetraacetylamide di-sulfonium derivative of the closo-decaborate anion (1,10-B10H8(S(CH2C(O)NH2)2)2(4)). The resulting compounds were characterized using multinuclear NMR spectroscopy on 11B, 1H, 13C nuclei, IR spectroscopy and elemental analysis. The structures of compounds 2, 3, 4 were determined by X-ray diffraction analysis. Based on X-ray diffraction data and Hirschfeld surface analysis, crystal packing and intermolecular interactions in compound 4 were studied.
作者简介
А. Golubev
Kurnakov Institute of General and Inorganic Chemistry
编辑信件的主要联系方式.
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow
D. Baltovskaya
Kurnakov Institute of General and Inorganic Chemistry; Mendeleev University of Chemical Technology of Russia
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow; Moscow
А. Kubasov
Kurnakov Institute of General and Inorganic Chemistry
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow
А. Bykov
Kurnakov Institute of General and Inorganic Chemistry
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow
К. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry
Email: golalekseival@mail.ru
俄罗斯联邦, Moscow
参考
- Hawthorne M.F. // Angew. Chem. Int. Ed. English. 1993. V. 32. № 7. P. 950. https://doi.org/10.1002/anie.199309501
- Sivaev I.B., Bregadze V.V. // Eur. J. Inorg. Chem. 2009. № 11. P. 1433. https://doi.org/10.1002/ejic.200900003
- Ali F., S Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
- Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
- Gao S., Zhu Y., Hosmane N. // Boron-Based Compounds: Potential and Emerging Applications in Medicine / Eds. Hey-Hawkins E., Teixidor C.V. Hoboken: Wiley, 2018. P. 371. https://doi.org/10.1002/9781119275602.ch3.4
- Matveev E.Y., Garaev T.M., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 670. https://doi.org/10.1134/S0036023623600533
- Dash B.P., Satapathy R., Maguire J.A. et al. // New J. Chem. 2011. V. 35. № 10. P. 1955. https://doi.org/10.1039/c1nj20228f
- Malinina E.A., Myshletsov I.I., Buzanov G.A. et al. // Molecules. 2023. V. 28. № 1. P. 453. https://doi.org/10.3390/molecules28010453
- Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 9. P. 1125. https://doi.org/10.1134/S0036023616090023
- Shakirova O.G., Daletskii V.A., Lavrenova L.G. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 6. P. 650. https://doi.org/10.1134/S0036023613060211
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1673. https://doi.org/10.1134/S0036023617130022
- Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 628. https://doi.org/10.1134/S0036023622050023
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 657. https://doi.org/10.1134/S0036023623600314
- Knapp C. // Comprehensive Inorganic Chemistry II: From Elements to Applications / Eds. Reedijk J., Poeppelmeier K.R. Elsevier, 2013. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
- Justus E., Vöge A., Gabel D. // Eur. J. Inorg. Chem. 2008. № 33. P. 5245. https://doi.org/10.1002/ejic.200800770
- Nieuwenhuyzen M., Seddon K.R., Teixidor F. et al. // Inorg. Chem. 2009. V. 48. № 3. P. 889. https://doi.org/10.1021/ic801448w
- Green M.D., Long T.E. // Polym. Rev. 2009. V. 49. № 4. P. 291. https://doi.org/10.1080/15583720903288914
- Kopytin A.V., Zhizhin K.Y., Urusov Y.I. et al. // J. Anal. Chem. 2011. V. 66. № 7. P. 666. https://doi.org/10.1134/s1061934811070070
- Spokoyny A.M. // Pure Appl. Chem. 2013. V. 85. № 5. P. 903. https://doi.org/10.1351/PAC-CON-13-01-13
- Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. P. 123239. https://doi.org/10.1016/j.talanta.2022.123239
- Bae Y.S., Spokoyny A.M., Farha O.K. et al. // Chem. Commun. 2010. V. 46. № 20. P. 3478. https://doi.org/10.1039/b927499e
- Dziedzic R.M., Waddington M.A., Lee S.E. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 8. P. 6825. https://doi.org/10.1021/acsami.7b19302
- Stogniy M.Y., Bogdanova E.V., Anufriev S.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1537. https://doi.org/10.1134/S0036023622600848
- Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
- Nelyubin A.V., Klyukin I.N., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 658. https://doi.org/10.1134/S003602362360048X
- Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 295. https://doi.org/10.1134/S0036023621030190
- Golub I.E., Filippov O.A., Belkova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1639. https://doi.org/10.1134/S0036023621110073
- Knoth W.H. // J. Am. Chem. Soc. 1966. V. 88. № 5. P. 935. https://doi.org/10.1021/ja00957a013
- Wright J., Kaczmarczyk A. // Inorg. Chem. 1973. V. 12. № 6. P. 1972.
- Kaszynski P., Huang J., Jenkins G.S. et al. // Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A: Mol. Cryst. Liq. Cryst. 1995. V. 260. № 1. P. 315. https://doi.org/10.1080/10587259508038705
- Ringstrand B., Kaszyński P. // Acc. Chem. Res. 2013. V. 46. № 2. P. 214.
- Jankowiak A., Baliński A., Harvey J.E. et al. // J. Mater. Chem. C. 2013. V. 1. № 6. P. 1144. https://doi.org/10.1039/c2tc00547f
- Kaszyński P., Ringstrand B. // Angew. Chem. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
- Hietsoi O., Kapuściński S.P., Friedli A.C. et al. // J. Mol. Struct. 2023. V. 1284. P. 135324. https://doi.org/10.1016/j.molstruc.2023.135324
- Kapuściński S., Hietsoi O., Pietrzak A. et al. // Chem. Commun. 2022. V. 58. № 6. P. 851. https://doi.org/10.1039/d1cc06485a
- Jankowiak A., Kanazawa J., Kaszynski P. et al. // J. Organomet. Chem. 2013. V. 747. P. 195. https://doi.org/10.1016/j.jorganchem.2013.05.034
- Ali M.O., Lasseter J.C., Żurawiński R. et al. // Chem. Eur. J. 2019. V. 25. № 10. P. 2616. https://doi.org/10.1002/chem.201805392
- Ringstrand B., Jankowiak A., Johnson L.E. et al. // J. Mater. Chem. 2012. V. 22. № 11. P. 4874. https://doi.org/10.1039/c2jm15448j
- Guschlbauer J., Shaughnessy K.H., Pietrzak A. et al. // Organometallics. 2021. V. 40. № 15. P. 2504. https://doi.org/10.1021/acs.organomet.1c00269
- Voinova V.V., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 6. P. 678. https://doi.org/10.1134/S003602362360017X
- Muetterties E.L., Balthis J.H., Chia Y.T. et al. // Inorg. Chem. 1964. V. 3. № 3. P. 444. https://doi.org/10.1021/ic50013a030
- Bruker, SAINT, Bruker AXS Inc.: Madison, 2018.
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr. Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
- Kubasov A.S., Turishev E.S., Golubev A.V. et al. // Inorg. Chim. Acta. 2020. V. 507. P. 119589. https://doi.org/10.1016/j.ica.2020.119589
- Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
补充文件
