Photoactive layers based on ZnO nanorods obtained by hydrothermal synthesis for dye-sensitized solar cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The application of zinc oxide ZnO nanorods of different heights obtained by hydrothermal synthesis as functional layers for dye-sensitized solar cells has been considered. The structure, morphology, and optical properties of the nanorod layers were investigated by X-ray phase analysis, scanning electron microscopy, and optical spectroscopy. Photoanodes were fabricated using thieno[3,2-b]indole-based dyes IS 4 and IS 9. The adsorption mechanism of the dyes and ZnO structures was studied by IR spectroscopy. The efficiency of photoanodes was investigated using photoelectrochemical measurements. The dependence of the efficiency of the dye sensitized solar cells on the length of the nanorods was shown. The maximum light conversion result was obtained for a photoanode with an average nanorod height of 2.5 μm and dye adsorbed IS 4.

Full Text

Restricted Access

About the authors

E. P. Averochkin

National Research University of Electronic Technology

Author for correspondence.
Email: aep1997@rambler.ru
Russian Federation, Moscow, 124498

A. S. Steparuk

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: aep1997@rambler.ru
Russian Federation, Ekaterinburg, 620137

E. V. Tekshina

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: aep1997@rambler.ru
Russian Federation, Moscow, 119991

D. A. Krupanova

National Research University of Electronic Technology; Moscow Institute of Physics and Technology (National Research University)

Email: aep1997@rambler.ru
Russian Federation, Moscow, 124498; Dolgoprudny, 141701

V. V. Emets

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: aep1997@rambler.ru
Russian Federation, Moscow, 119991

L. S. Volkova

National Research University of Electronic Technology

Email: aep1997@rambler.ru
Russian Federation, Moscow, 124498

R. M. Ryazanov

National Research University of Electronic Technology

Email: aep1997@rambler.ru
Russian Federation, Moscow, 124498

E. A. Lebedev

National Research University of Electronic Technology

Email: aep1997@rambler.ru
Russian Federation, Moscow, 124498

S. A. Kozyukhin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Tomsk State University

Email: aep1997@rambler.ru

Faculty of Chemistry

Russian Federation, Moscow, 119991; 49, Tomsk, 634050

References

  1. Kumar V., Gupta R., Bansal A. // ACS Appl. Nano Mater. 2021. V. 4. P. 6212. https://doi.org/10.1021/acsanm.1c01012
  2. Kim K.H., Utashiro K., Abe Y., Kawamura M. // Materials. 2014. V. 7(4). P. 2522. https://doi.org/10.3390/ma7042522
  3. Kumar R., Umar A., Kumar G. et al. // Mater. Sci. 2017. V. 52. P. 4743. https://doi.org/10.1007/s10853-016-0668-z
  4. Shah M.A. // Mod. Phys. Lett. B. 2008. V. 22. № 26. P. 2617. https://doi.org/10.1142/S0217984908017126
  5. Samanta P.K., Bandyopadhyay A.K. // Appl. Nanosci. 2012. V. 2. P. 111. https://doi.org/10.1007/s13204-011-0038-8
  6. Li X., Li R., Feng X. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1386. https://doi.org/10.1134/s0036023623601307
  7. Bouarroudj T., Aoudjit L., Nessaibia I. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1074. https://doi.org/10.1134/S0036024423050278
  8. Duangnet L., Phuruangrat A., Thongtem T. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 721. https://doi.org/10.1134/S0036023622050114
  9. Djurisic A.B., Chen X., Leung, Y.H. et al. // J. Mater. Chem. 2012. V. 22. P. 6526. https://doi.org/10.1039/c2jm15548f
  10. Guell F., Galdamez-Martinez A., Martinez-Alanis P.R. et al. // Mater. Adv. 2023. V. 4. P. 3685. https://doi.org/10.1039/D3MA00227F
  11. Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2099. https://doi.org/10.1134/S0036023622601520
  12. Ulyankina A.A., Tsarenko A.D., Molodtsova T.A. et al. // Russ. J. Electrochem. 2023. V. 59. P. 1032. https://doi.org/10.1134/S1023193523120145
  13. Grätzel M. // Prog. Photovolt: Res. Appl. 2006. V. 14. № 5. P. 429. https://doi.org/10.1002/pip.712
  14. Grifoni F., Bonomo M., Naim W. et al. // Adv. Energy Mater. 2021. V. 11. P. 1. https://doi.org/10.1002/aenm.202101598
  15. Ahmad W., Mehmood U., Al-Ahmed A. et al. // Electrochim. Acta. 2016. V. 222. P. 473. https://doi.org/10.1016/j.electacta.2016.10.200
  16. Tiwana P., Docampo P., Johnston M.B. et al. // ACS Nano. 2011. V. 5. P. 5158. https://doi.org/10.1021/nn201243y
  17. Sufyan M., Mehmood U., Qayyum Gill Y. et al. // Mater. Lett. 2021. V. 297. P. 1. https://doi.org/10.1016/j.matlet.2021.130017
  18. Qu, J., Lai C. // J. Nanomater. 2013 V. 2013. P. 1. https://doi.org/10.1155/2013/762730
  19. Law M., Greene L.E., Johnson J.C. et al. // Nat. Mater. 2005. V. 4. P. 455. https://doi.org/10.1038/nmat1387
  20. Marimuthu T., Anandhan N. // AIP Conf. Proc. 2015. V. 1728. P. 020621-1. https://doi.org/10.1063/1.4946672
  21. Yodyingyong S., Zhang Q., Park K. et al. // Appl. Phys. Lett. 2010. V. 96. № 7. P. 073115-1. https://doi.org/10.1063/1.3327339
  22. Brown P., Takechi K., Kamat P.V. // J. Phys. Chem. C. 2008. V. 112. № 12. P. 4776. https://doi.org/10.1021/jp7107472
  23. Bharat T.C., Shubham, Mondal S. et al. // Mater. Today: Proc. 2019. V. 11. P. 767. https://doi.org/10.1016/j.matpr.2019.03.041
  24. Lin C.C., Li Y.Y. // Mater. Chem. Phys. 2009. V. 113. P. 334.
  25. Gan Y.X., Jayatissa A.H., Yu Z. et al. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/8917013
  26. Edalati K., Shakiba A., Vahdati-Khaki J., Zebarjad S.M. // Mater. Res. Bull. 2016. V. 74. P. 374. https://doi.org/10.1016/j.materresbull.2015.11.001
  27. Mohajerani M.S., Lak A., Simchi A. // J. Alloys Compd. 2009. V. 485. № 1–2. P. 616. https://doi.org/10.1016/j.jallcom.2009.06.054
  28. Steparuk A.S., Irgashev R.A., Zhilina E.F. et al. // J. Mater. Sci. – Mater. Electron. 2022. V. 33. P. 6307. https://doi.org/10.1007/s10854-022-07805-w
  29. Iyengar P., Das C., Balasubramaniam K.R. // J. Phys. D: Appl. Phys. 2017. V. 50. № 10. P. 1. https://doi.org/10.1088/1361-6463/aa5875
  30. Chowdhury M.S., Rahman K.S., Selvanathan V. et al. // RSC Advances. 2021. V. 11. № 24. P. 14534. https://doi.org/10.1039/D1RA00338K
  31. Yang F., Ma S., Zhang X. et al. // Superlattices Microstruct. 2012. V. 52. № 2. P. 210. https://doi.org/10.1016/j.spmi.2012.05.004
  32. Jeon E.H., Yang S., Kim Y. et al. // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 1. https://doi.org/10.1186/s11671-015-1063-4
  33. Khan A., Hussain M., Nur O. et al. // J. Phys. D: Appl. Phys. 2014. V. 47. № 34. P. 1. https://doi.org/10.1088/0022-3727/47/34/345102
  34. Maikap A., Mukherjee K., Mondal B., Mandal N. // RSC Advances. 2016. V. 6. P. 64611. https://doi.org/10.1039/C6RA09598D
  35. Laha P., Nazarkin M., Volkova A.V. et al. // Appl. Phys. Lett. 2015. V. 106. P. 101904. https://doi.org/10.1063/1.4913909
  36. Li J.Y., Chen X.L., Li H. et al. // J. Cryst. Growth. 2001 V. 233. P. 5. https://doi.org/10.1016/S0022-0248(01)01509-3
  37. Tauc J., Scott T.A. // Phys. Today. 1967. V. 20. № 10. P. 105. https://doi.org/10.1063/1.3033945
  38. Musa I., Qamhieh N., Mahmoud S.T. // Res. in Phys. 2017. V. 7. P. 3552. https://doi.org/10.1016/j.rinp.2017.09.035
  39. Idiawati R., Mufti N., Taufiq A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 202. P. 012050. https://doi.org/10.1088/1757-899X/202/1/012050
  40. Zhang L., Cole J.M. // ACS Appl. Mater. and Interfaces. 2015. V. 7. P. 3427. https://doi.org/10.1021/am507334m
  41. Bojarski J.T., Mokrosz J.L., Barton H.J. et al. // Adv. Heterocycl. Chem. 1985. V. 38. P. 229. https://doi.org/10.1016/S0065-2725(08)60921-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulas of dyes IS 4 and IS 9.

Download (53KB)
3. Fig. 2. X-ray diffractogram of arrays of ZnO nanorods on a glass substrate with an FTO layer. An asterisk indicates reflexes corresponding to the conductive layer of the FTO.

Download (63KB)
4. Fig. 3. SEM images of ZnO nanorods oriented on a glass conductive substrate with different growth times: a, c - 30 min; b, d – 120 min.

Download (462KB)
5. Fig. 4. Normalized absorption spectra (a) and calculation of the band gap (b) of ZnO nanorods obtained during 30 (1) and 120 min (2).

Download (212KB)
6. Fig. 5. Absorption spectra of ZnO nanorods obtained during 30 (a) and 120 min (b) without dyes and with dyes IS 4, IS 9 adsorbed on the surface of ZnO: 1 – ZnO; 2 – IS 4 on ZnO; 3 – IS 9 on ZnO.

Download (210KB)
7. Fig. 6. IR transmission spectra of dyes IS 4 (a) and IS 9 (b) adsorbed on the surface of ZnO: 1 – dye; 2 – dye on ZnO; 3 – ZnO.

Download (343KB)
8. Fig. 7. Volt-ampere characteristics of samples of photoanodes 1-4 with dyes IS 4 and IS 9. The insert shows an image of a photoanode with an adsorbed dye.

Download (105KB)
9. Figure 8. Quantum efficiency of the sample 3.

Download (161KB)

Copyright (c) 2024 Russian Academy of Sciences