Metal-organic framework based on nickel, L-tryptophan and 1,2-bis(4-pyridyl)ethylene, consolidated on a track-etched membrane

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An approach to the functionalization of track-etched membranes (TM) by metal-organic framework consisting of nickel, L-tryptophan, and 1,2-bis(4-pyridyl)ethylene (Ni-MOF) was developed. The effect of TM surface charge on the Ni-MOF self-assembly was studied. It was established that the microstructure of Ni-MOF does not depend on the method of TM modification. It was shown that the Ni-MOF self-assembly on TM modified with chitosan nanofibers is the most promising approach to the creation of a composite of TM and Ni-MOF, because the performance of the membrane do not reduce. Using scanning electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy and IR spectroscopy it was shown that the composition and structure of free Ni-MOF (in powder form) and Ni-MOF in the consolidated material are identical. X-ray photoelectron spectra of Ni-MOF powders after its contact with solutions of Cd, Cu, Cs salts and adsorption kinetics study of Cd, Li, Ag, Zn, Mg, Li ions showed that Ni-MOF can be a potential sorbent of metal ions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Ponomareva

Joint Institute for Nuclear Research; Dubna State University

Хат алмасуға жауапты Автор.
Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

N. Drozhzhin

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

I. Vinogradov

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

T. Vershinina

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

V. Altynov

Joint Institute for Nuclear Research

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980

I. Zuba

Institute of Nuclear Chemistry and Technology

Email: oyuivanshina@mail.ru
Польша, Dorodna 16, Warsaw, 03-195

A. Nechaev

Joint Institute for Nuclear Research; Dubna State University

Email: oyuivanshina@mail.ru
Ресей, 6 Joliot-Curie St, Dubna, 141980; 19 Universitetskaya St, Dubna, 141982

A. Pawlukojć

Institute of Nuclear Chemistry and Technology

Email: oyuivanshina@mail.ru
Польша, Dorodna 16, Warsaw, 03-195

Әдебиет тізімі

  1. Rocio-Bautista P., Gonzalez-Hernandez P., Pino V. et al. // TrAC, Trends Anal. Chem. 2017. V. 90. P. 114. https://doi.org/10.1016/j.trac.2017.03.002
  2. Князева М.К., Соловцова О.В., Цивадзе А.Ю. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1271. https://doi.org/10.1134/S0044457X19120067
  3. Murray L.J., Dinca M., Long J.R. // Chem. Soc. Rev. 2009. V. 38. P. 1294. https://doi.org/10.1039/b802256a
  4. Li J.-R., Kuppler R.J., Zhou H.-C. // Chem. Soc. Rev. 2009. V. 38. P. 1477. https://doi.org/10.1039/b802426j
  5. Manousi M., Giannakoudakis D.A., Rosenberg E. et al. // Molecules. 2019. V. 24. P. 4605. https://doi.org/10.3390/molecules24244605
  6. Safaei M., Foroughi M.M., Ebrahimpoor N. et al. // TrAC, Trends Anal. Chem. 2019. V. 118. P. 401. https://doi.org/10.1016/j.trac.2019.06.007
  7. Kang H.X., Fu Y.Q., Xin L.Y. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2365. https://doi.org/10.1134/S107036322012021X
  8. Юткин М.П., Дыбцев Д.Н., Федин В.П. // Успехи химии. 2011. Т. 80. № 11. С. 1061.
  9. Zhu H., Liu D. // J. Mater. Chem. A. 2019. V. 7. P. 21004. https://doi.org/10.1039/C9TA05383B
  10. Xu X., Hartanto Yu., Zheng J. et al. // Membranes. 2022. V. 12. P. 1205. https://doi.org/10.3390/membranes12121205
  11. Hyuk Taek Kwon, Hae-Kwon Jeong // J. Am. Chem. Soc. 2013. V. 135. 29. P. 10763. https://doi.org/10.1021/ja403849c
  12. Виноградов И.И., Петрик Л., Серпионов Г.В. и др. // Мембраны и мембранные технологии. 2021. Т. 11. № 6. С. 447.
  13. Виноградов И.И., Андреев Е.В., Юшин Н.С. и др. // Теоретические основы химической технологии. 2023. Т. 57. № 4. С. 479. https://doi.org/10.31857/S0040357123040176
  14. Efome J.E., Rana D., Matsuura T. et al. // J. Mater. Chem. A. 2018. V. 6. P. 455. https://doi.org/10.1039/c7ta10428f
  15. Wahiduzzaman, Allmond K., Stone J. et al. // Nanoscale Res. Lett. 2017. V. 12. Art. 6. https://doi.org/10.1186/s11671-016-1798-6
  16. Lv L., Han X., Mu M. et al. // J. Membr. Sci. 2021. V. 622. P. 119049. https://doi.org/10.1016/j.memsci.2021.119049
  17. Arbulu R.C., Jiang Y.-B., Peterson E.J. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 5813. https://doi.org/10.1002/anie.201802694
  18. Yu B., Ye G., Chen J. et al. // Environ. Pollut. 2019. V. 253. P. 39. https://doi.org/10.1016/j.envpol.2019.06.114
  19. Caddeo F., Vogt R., Weil D. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 25378 https://doi.org/10.1021/acsami.9b04449
  20. Ivanshina O.Yu., Zuba I., Sumnikov S.V. et al. // AIP Conf. Proc. 2021. V. 2377. P. 020001. https://doi.org/10.1063/5.0063607
  21. Zuba I., Zuba M., Piotrowski M. et al. // Appl. Radiat. Isot. 2020. V. 162. P. 109176. https://doi.org/10.1016/j.apradiso.2020.109176
  22. Deleu W.P.R., Stassen I., Jonckheere D. et al. // J. Mater. Chem. A. 2016. V. 4. № 24. P. 9519. https://doi.org/10.1039/C6TA02381A
  23. Kristavchuk O.V., Nikiforov I.V., Kukushkin V.I. et al. // Colloid J. 2017. V. 79. № 5. P. 637. https://doi.org/10.1134/S1061933X17050088
  24. Березкин В.В., Васильев А.Б., Цыганова Т.В. и др. // Мембраны. 2008. Т. 4. № 40. С. 3
  25. Lutterotti L., Matthies S., Wenk H. // IUCr: Newsletter of the CPD. 1999. V. 21. P. 14.
  26. Cardenas Bates I.I., Loranger É., Chabot B. // SN Appl. Sci. 2020. V. 2. P. 1540. https://doi.org/10.1007/s42452-020-03342-5
  27. Zhuang Zh., Cheng J., Jia H. et al. // Vib. Spectrosc. 2007. V. 43. № 2. P. 306. https://doi.org/10.1016/j.vibspec.2006.03.009
  28. Ivanova B.B. // Spectrochim. Acta. A. 2006. V. 64. P. 931. https://doi.org/10.1016/j.saa.2005.08.022
  29. Mendiratta Sh., Usman M., Luo T.-T. et al. // Cryst. Growth Des. 2014. V. 14. P. 1572. https://doi.org/10.1021/cg401472k
  30. Li B., ShanShan Ch.-L., ZhouZhou Q. et al. // Mar. Drugs. 2013. V. 11. № 5. P. 1534. https://doi.org/10.3390/md11051534
  31. Prasad S.G., De A., De U. // Int. J. Spectrosc. 2011. V. 2011. P. 1. https://doi.org/10.1155/2011/810936
  32. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. № 22. P. 3533. https://doi.org/10.1021/ja00905a001
  33. Peng Ya., Huang H., Zhang Yu. et al. // Nat. Commun. 2018. V. 9. P. 187. https://doi.org/10.1038/s41467-017-02600-2

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. ζ-Membrane potential depending on the pH of the electrolyte: 1 – TM; 2 – TM/HNO3; 3 – TM/PEI; 4 – TM + Chitosan.

Жүктеу (906KB)
3. Fig. 2. Micrographs of the surface of composites synthesized during 24 hours: a – TM + Ni-MOX; b – TM/HNO3 + Ni-MOX; c – TM/PEI + Ni-MOX; g – TM + Chitosan + Ni-MOX.

Жүктеу (1MB)
4. Fig. 3. The average specific water productivity of the studied membranes: 1 – TM; 2 – TM + Ni-MOX; 3 – TM/HNO3 + Ni-MOX; 4 – TM/PEI + + Ni-MOX; 5 – TM + Chitosan + Ni-MOX.

Жүктеу (980KB)
5. Fig. 4. Micrographs of the surface of the TM + Chitosan + Ni-MOX sample with different magnification, synthesis time 24 h.

Жүктеу (334KB)
6. Fig. 5. Micrographs of the surface of TM + Chitosan + Ni-MOX composites synthesized during 2 (a), 24 (b) and 48 (c) hours.

Жүктеу (878KB)
7. Fig. 6. Graph of the dependence of the specific gravity of Ni-MOX in the TM + Chitosan + Ni-MOX composite on the duration of synthesis.

Жүктеу (112KB)
8. Fig. 7. RFES spectra: a – TM + Chitosan + Ni-MOX; b – Ni-MOX powder.

Жүктеу (145KB)
9. Fig. 8. IR Fourier spectra: a – TM + Chitosan; b – TM + Chitosan + Ni-MOX; c – Ni-MOX powder.

Жүктеу (316KB)
10. Fig. 9. a – Micrography of Ni-MOX powder; b – radiograph of Ni-MOX after refinement by Rietveld method. Rwp = 3.73, χ2 = 4.1: 1 – experimental; 2 – calculated; 3 – difference.

Жүктеу (1MB)
11. 10. X–ray images of samples: 1 - Ni–MOX powder; 2 – TM + Chitosan; 3 - TM + Chitosan + Ni–MOX, synthesis of 1 hour; 4 - TM + Chitosan + Ni-MOX, synthesis of 2 hours; 5 – TM + Chitosan + Ni-MOX, synthesis of 4 h; 6 – TM + Chitosan + Ni-MOX, synthesis of 8 h; 7 – TM + Chitosan + Ni-MOX, synthesis of 24 h; 8 – TM + + Chitosan + Ni-MOX, synthesis of 48 h.

Жүктеу (1MB)
12. Fig. 11. Spectra of RFES Ni-MOX after contact with cadmium (a), copper (b), and caesium (b) ions.

Жүктеу (340KB)
13. 12. Kinetics of metal ion adsorption: 1-Ni – MOX + Li+, 2-Ni –MOX + Mg2+, 3-Ni – MOX + + Zn2+, 4-Ni – MOX + Ag+, 5-Ni-MOX + Cd2+.

Жүктеу (899KB)

© Russian Academy of Sciences, 2024