Chemical Generation And Reactivity Of Highly Oxidized Oxo-Species Of Water-Soluble µ-Carbide Dimer Ruthenium(IV)Phthalocyaninate
- Authors: Zaitseva S.V.1, Zdanovich S.A.1, Sukharev V.S.2, Koifman O.I.1,3
-
Affiliations:
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Science
- Ivanovo State University of Chemistry and Technology
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
- Issue: Vol 69, No 6 (2024)
- Pages: 829-843
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666494
- DOI: https://doi.org/10.31857/S0044457X24060058
- EDN: https://elibrary.ru/XTNYKH
- ID: 666494
Cite item
Abstract
The chemical generation of highly oxidized species of µ-carbido dimer water-soluble ruthenium sulfophthalocyaninate in reaction with tert-butyl hydroperoxide was studied using spectral methods. The regularities of the active species formation have been established and a reaction mechanism has been proposed. The coordinating ability of the dimeric complex is shown to determine the possibility of the π-radical cation and diradical cation species formation. The influence of peroxide concentration and pH of the medium on the type of the generated active species capable of oxidizing not only synthetic dye, but also organic peroxide, is demonstrated.
Keywords
Full Text

About the authors
S. V. Zaitseva
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Science
Author for correspondence.
Email: svz@isc-ras.ru
Russian Federation, Ivanovo, 153045
S. A. Zdanovich
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Science
Email: svz@isc-ras.ru
Russian Federation, Ivanovo, 153045
V. S. Sukharev
Ivanovo State University of Chemistry and Technology
Email: svz@isc-ras.ru
Russian Federation, Ivanovo, 153000
O. I. Koifman
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Science; N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
Email: svz@isc-ras.ru
Russian Federation, Ivanovo, 153045; Moscow, 119991
References
- Cytochrome P450: Structure, Mechanism, and Biochemistry / Ed. Ortiz de Montellano P.R. New York: Kluwer Academic/Plenum Publishers, 2005. 690 p. https://doi.org/10.1007/b139087
- Denisov I.G., Makris T.M., Sligar S.G. et al. // Chem. Rev. 2005. V. 105. № 6. P. 2253. https://doi.org/10.1021/cr0307143
- Fumito T., Mikiya M., Shinya N. et al. // Coord. Chem. Rev. 2002. V. 226. № 1–2. P. 219. https://doi.org/10.1016/S0010-8545(01)00444-1
- Eric R., Alexandra L., Mélanie Q. et al. // Coord. Chem. Rev. 1998. V. 178–180. P. 1407. https://doi.org/10.1016/S0010-8545(98)00148-9
- Meunier B., de Visser S.P., Shaik S. // Chem. Rev. 2004. V. 104. № 9. P. 3947. https://doi.org/10.1021/cr020443g
- Omura K., Aiba Y., Suzuki K. et al. // ACS Catal. 2022. V. 12. № 18. P. 11108. https://doi.org/10.1021/acscatal.2c01345
- Bhunia S., Ghatak A., Dey A. // Chem. Rev. 2022. V. 122. № 14. P. 12370. https://doi.org/10.1021/acs.chemrev.1c01021
- Nam W. // Acc. Chem. Res. 2007. V. 40. № 7. P. 522. https://doi.org/10.1021/ar70002
- Kent M.U., Jushchhyshyn I.M., Hollenberg F.P. // Curr. Drug Metab. 2001. V. 2. № 3. P. 215. https://dx.doi.org/10.2174/1389200013338478
- John B.S., Stephen G.S., Dominick L.C. // Pharmacol. Ther. 1981. V. 12. № 1. P. 43. https://doi.org/10.1016/0163-7258(81)90075-9
- Nam W., Ryu Y.O., Song W.J. // J. Biol. Inorg. Chem. 2004. V. 9. № 6. P. 654. https://doi.org/10.1007/s00775-004-0577-5
- Nam W., Lim M.H., Lee H.J. et al. // J. Am. Chem. Soc. 2000. V. 122. № 28. P. 6641. https://doi.org/10.1021/ja000289k
- Collman J.P., Chien A.S., Eberspacher T.A. et al. // J. Am. Chem. Soc. 2000. V. 122. № 45. P. 11098. https://doi.org/10.1021/ja000961d
- Collman J.P., Zeng L., Decréau R.A. // Chem. Commun. 2003. P. 2974. http://dx.doi.org/10.1039/B310763A
- Nam W., Jin S.W., Lim M.H. et al. // Inorg. Chem. 2002. V. 41. № 14. P. 3647. https://doi.org/10.1021/ic011145p
- Shaik S., Hirao H., Kumar D. // Acc. Chem. Res. 2007. V. 40. № 7. P. 532. https://doi.org/10.1021/ar600042c
- Franke A., Fertinger C., van Eldik R. // Angew. Chem. Int. Ed. 2008. V. 47. № 28. P. 5238. https://doi.org/10.1002/anie.200800907
- Hessenauer-Ilicheva N., Franke A., Wolak M. et al. // Chem. Eur. J. 2009. V. 15. № 45. P. 12447. https://doi.org/10.1002/chem.200901712
- Baglia R.A., Zaragoza J.P.T., Goldberg D.P. // Chem. Rev. 2017. V. 117. № 21. P. 13320. https://doi.org/10.1021/acs.chemrev.7b00180
- Huang X., Groves J.T. // Chem. Rev. 2018. V. 118. 5. P. 2491. https://doi.org/10.1021/acs.chemrev.7b00373
- Guo M., Corona T., Ray K. et al. // ACS Cent. Sci. 2019. V. 5. № 1. P. 13. https://doi.org/10.1021/acscentsci.8b00698
- Cipriano L.A., Di Liberto G., Pacchioni G. // ACS Catal. 2022. V. 12. № 19. P. 11682. https://doi.org/10.1021/acscatal.2c03020
- Groves J.T., Myers R.S. // J. Am. Chem. Soc. 1983. V. 105. № 18. P. 5791. https://doi.org/10.1021/ja00356a016
- Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- Kang Y., Chen H., Jeong Y.J. et al. // Chem. Eur. J. 2009. V. 15. № 39. P. 10039. https://doi.org/10.1002/chem.200901238
- Yakushev A.A., Averin A.D., Maloshitskaya O.A. et al. // Macroheterocycles. 2018. V. 11. № 2. P. 135. https://doi.org/10.6060/mhc180276a
- Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений / Под. ред. Койфмана О.И. М.: URSS, 2019. 848 с. ISBN 978-5-9710-6952-2
- Christendat D, David M.-A., Morin S. et al. // J. Porphyr. Phthalocyanines. 2005. V. 9. № 9. P. 626. https://doi.org/10.1142/S1088424605000733
- Balkus K.J., Eissa M., Lavado R. // Studies in Surface Science and Catalysis. 1995. V. 94. P. 713. https://doi.org/10.1016/S0167-2991(06)81288-7
- Balkus K.J.Jr., Eissa M., Levado R. // J. Am. Chem. Soc. 1995. V. 117. № 43. P. 10753. https://doi.org/10.1021/ja00148a022
- Alexiou C., Lever A.B.P. // Coord. Chem. Rev. 2001. V. 216–217. P. 45. https://doi.org/10.1016/S0010-8545(01)00350-2
- Rawling T., McDonagh A. // Coord. Chem. Rev. 2007. V. 251. № 9–10. P. 1128. https://doi.org/10.1016/j.ccr.2006.09.011
- Cammidge A.N., Berber G., Chambrier I. et al. // Tetrahedron. 2005. V. 61. № 16. P. 4067. https://doi.org/10.1016/j.tet.2005.02.027
- Cailler L.P., Clémancey M., Barilone J. et al. // Inorg. Chem. 2020. V. 59. № 2. P. 1104. https://doi.org/10.1021/acs.inorgchem.9b02718
- Kroitor A.P., Cailler L.P., Martynov A.G. et al. // Dalton Trans. 2017. V. 46. № 45. P. 15651. http://dx.doi.org/10.1039/C7DT03703A
- Зайцева С.В., Зданович С.А., Тюрин Д.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 294. https://doi.org/10.31857/S0044457X22030175
- Zaitseva S.V., Tyulyaeva E.Yu., Tyurin D.V. et al. // J. Organomet. Chem. 2020. V. 912. P. 121164. https://doi.org/10.1016/j.jorganchem.2020.121164
- Zaitseva S.V., Tyulyaeva E.Yu., Tyurin D.V. et al. // Polyhedron. 2022. V. 217. P. 115739. https://doi.org/10.1016/j.poly.2022.115739
- Sorokin A.B. // Catal. Today. 2021. V. 373. P. 38. https://doi.org/10.1016/j.cattod.2021.03.016
- Capobianchi A., Paoletti A.M., Pennesi G. et al. // Inorg. Chem. 1994. V. 33. № 21. P. 4635. https://doi.org/10.1021/ic00099a013
- Cailler L.P., Kroitor A.P., Martynov A.G. et al. // Dalton Trans. 2021. V. 50. № 6. P. 2023. http://dx.doi.org/10.1039/D0DT04090H
- Симонова О.Р., Зайцева С.В., Тюляева Е.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 11. С. 1692. http://dx.doi.org/10.1134/S0044453718110390
- Зайцева С.В., Симонова О.Р., Зданович С.А. и др. // Макрогетероциклы. 2018. Т. 11. № 1. С. 55. http://dx.doi.org/10.6060/mhc180173s
- Тюрин Д.В., Зайцева С.В., Кудрик Е.В. // Журн. физ. химии. 2018. Т. 92. № 5. С. 723. https://doi.org/10.7868/S0044453718050084
- Zaitseva S.V., Tyulyaeva E.Yu., Zdanovich S.A. et al. // J. Mol. Liq. 2019. V. 287. P. 111023. https://doi.org/10.1016/j.molliq.2019.111023
- Kienast A., Galich L., Murray K.S. et al. // J. Porphyrins Phthalocyanines. 1997. V. 1. № 2. P. 141. https://doi.org/10.1002/(SICI)1099-1409(199704)1: 2%3C141::AID-JPP18%3E3.0.CO;2-M
- Kluson P., Drobek M., Kalaji A. et al. // Res. Chem. Intermed. 2009. V. 35. № 1. P. 103. https://doi.org/10.1007/s11164-008-0003-7
- Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. № 2. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814. https://doi.org/10.1021/acs.jcim.9b00725
- Экспериментальные методы химической кинетики / Под ред. Эмануэля Н.М., Сергеева Г.Б. М.: Высш. шк., 1980. 375с.
- Kutsybala D.S., Shokurov A.V., Kroitor A.P. et al. // Macroheterocycles. 2021. V. 14. № 1. P. 51. https://doi.org/10.6060/mhc210234
- Nyokong T., Gasyna Z., Stillman M.J. // Inorg. Chem. 1987. V. 26. № 7. P. 1087. https://doi.org/10.1021/ic00254a025
- Hanack M., Osío-Barcina J., Witke E. et al. // Synthesis. 1992. V. 1992. № 01-02. P. 211. https://doi.org/10.1055/s-1992-34149
- Singh A.K., Usman M., Sarkar S. et al. // Inorg. Chem. 2021. V. 60. № 21. P. 16492. https://doi.org/10.1021/acs.inorgchem.1c02331
- Sil D., Dey S., Kumar A. et al. // Chem. Sci. 2016. V. 7. № 2. P. 1212. https://doi.org/10.1039/c5sc03120f
- Гришина Е.Г., Макарова А.С., Кудрик Е.В. и др. // Журн. физ. химии. 2016. Т. 90. № 3. С. 477. https://doi.org/10.7868/S0044453716030134
- Sugishima M., Sakamoto H., Higashimoto Y. et al. // J. Biol. Chem. 2003. V. 278. № 34. P. 32352. https://doi.org/10.1074/jbc.M303682200
- Симонова О.Р., Зайцева С.В., Койфман О.И. // Журн. общ. химии. 2016. Т. 86. № 6. С. 992. https://doi.org/10.1134/S1070363216060177
- Pedersen C.J. // J. Org. Chem. 1957. V. 22. № 2. P. 127. https://doi.org/10.1021/jo01353a005
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds / Handbook of Vibrational Spectroscopy. Eds Chalmers J.M., Griffiths P.R. John Wiley & Sons, 2006. P. 1872. https://doi.org/10.1002/0470027320.s4104
- Chlistunoff J., Sansiñena J.-M. // J. Phys. Chem. C. 2014. V. 118. № 33. P. 19139. https://doi.org/10.1021/jp5044249
- Podgorski M.N., Coleman T., Churchman L.R. et al. // Chem. Eur. J. 2022. V. 28. № 72. P. e202202428. https://doi.org/10.1002/chem.202202428
- Coleman T., Kirk A.M., Chao R.R. et al. // ACS Catal. 2021. V. 11. № 4. P. 1995. https://doi.org/10.1021/acscatal.0c04872
- Fertinger C., Hessenauer-Ilicheva N., Franke A. et al. // Chem. Eur. J. 2009. V. 15. № 48. P. 13435. https://doi.org/10.1002/chem.200901804
- Rayati S., Sheybanifard Z. // C.R. Chim. 2016. V. 19. № 3. P. 371. https://doi.org/10.1016/j.crci.2015.12.001
- Liang L., Cheng L., Zhang Y. et al. // RSC Adv. 2020. V. 10. P. 28509. https://doi.org/10.1039/d0ra03125a
- Li H., Gong Y., Huang Q. et al. // Ind. Eng. Chem. Res. 2013. V. 52. № 44. P. 15560. https://doi.org/10.1021/ie401503u
Supplementary files
