Study of the Reversible Hawthorne Rearrangement between Isomeric Forms of the Octadecahydroeicosaborate Anion using Dynamic 11B NMR Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of rearrangement of the octadecahydroeicosaborate anion [trans-B20H18]2– → [iso-B20H18]2– in various solvents (acetonitrile, DMF, DMSO) under UV irradiation in dynamics has been studied using 11B NMR spectroscopy. It has been shown that the time of complete isomeric transition depends on the solvent used. In acetonitrile, complete conversion of the [trans-B20H18]2– anion to the iso form is achieved in 1 h; in DMF, the process takes about 2 h; in DMSO, about 3 h. The reverse process of rearrangement of the macropolyhedral borohydride anion [iso-B20H18]2– → [trans-B20H18]2– has been studied under the influence of temperature in DMF and it has been shown that an increase in the reaction time and an increase in the temperature of the reaction solution is accompanied by degradation of the boron cluster.

Full Text

Restricted Access

About the authors

O. S. Dontsova

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571

E. Y. Matveev

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571; Moscow, 119991

E. A. Eshtukova-Shcheglova

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571

A. I. Nichugovskii

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571

A. V. Golubev

Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991

V. I. Privalov

Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991

V. V. Avdeeva

Kurnakov Institute of General and Inorganic Chemistry

Author for correspondence.
Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991

E. A. Malinina

Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119991

K. Y. Zhizhin

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571; Moscow, 119991

N. T. Kuznetsov

MIREA — Russian Technological University, Institute of Fine Chemical Technologies named after M.V. Lomonosov; Kurnakov Institute of General and Inorganic Chemistry

Email: avdeeva.varvara@mail.ru
Russian Federation, Moscow, 119571; Moscow, 119991

References

  1. Chamberland B.L., Muetterties E.L. // Inorg. Chem. 1964. V. 3. P. 1450. https://doi.org/10.1021/ic50020a025
  2. Hawthorne M.F., Pilling R.L. // J. Am. Chem. Soc. 1966. V. 88. P. 3873. https://doi.org/10.1021/ja00968a044
  3. Hawthorne M.F., Shelly K., Li F. // Chem. Commun. 2002. P. 547. https://doi.org/10.1039/B110076A
  4. Curtis Z.B., Young C., Dickerson R., Kaczmarczyk A. // Inorg. Chem. 1974. V. 13. P. 1760. https://doi.org/10.1021/ic50137a046
  5. Voinova V.V., Klyukin I.N., Novikov A.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 295. https://doi.org/10.1134/S0036023621030190
  6. Francés-Monerris A., Holub J., Roca-Sanjuán D. et al. // Phys. Chem. Lett. 2019. V. 10. P. 6202. https://doi.org/10.1021/acs.jpclett.9b02290
  7. Kaczmarczyk A., Dobrott R.D., Lipscomb W.N. // Proc. Nat. Acad. Sci. USA. 1962. V. 48. P. 729.
  8. Hawthorne M.F., Pilling R.L., Stokely P.F., Garrett P.M. // J. Am. Chem. Soc. 1963. V. 85. P. 3704.
  9. Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1868. https://doi.org/10.1002/(SICI)1521-3773(19980803) 37:13/14<1868::AID-ANIE1868>3.0.CO;2-Z
  10. Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. P. 16819. https://doi.org/10.1002/chem.201703285.
  11. Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // J. Struct. Chem. 2019. V. 60. P. 692. https://doi.org/10.1134/S0022476619050020
  12. Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2020. V. 65. P. 335. https://doi.org/10.1134/S003602362003002X
  13. Avdeeva V.V., Buzin M.I., Malinina E.A. et al. // Cryst. Eng. Comm. 2015. V. 17. P. 8870. https://doi.org/10.1039/C5CE00859J
  14. Avdeeva V.V., Kubasov A.S., Golubev A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1209. https://doi.org/10.1134/S0036023623601502
  15. Li F., Shelly K., Knobler C.B., Hawthorne M.F. // Angew. Chem. Int. Ed. 1998. V. 37. P. 1865.
  16. Bernhardt E., Brauer D.J., Finze M., Willner H. // Angew. Chem. Int. Ed. 2007. V. 46. P. 2927. https://doi.org/10.1002/anie.200604077
  17. Hawthorne M.F., Pilling R.L., Garrett P.M. // J. Am. Chem. Soc. 1965. V. 87. P. 4740. https://doi.org/10.1021/ja00949a013
  18. Georgiev E.M., Shelly K., Feakes D.A. et al. // Inorg. Chem. 1996. V. 35. P. 5412. https://doi.org/10.1021/ic960171y
  19. Li F., Shelly K., Kane R.R. et al. // Angew. Chem. Int. Ed. 1996. V. 35. P. 2646. https://doi.org/10.1002/anie.199626461
  20. Montalvo S.J., Hudnall T.W., Feakes D.A. // J. Organomet. Chem. 2015. V. 798. P. 141. https://doi.org/10.1016/j.jorganchem.2015.05.064
  21. Smits J.P., Mustachio N., Newell B., Feakes D.A. // Inorg. Chem. 2012. V. 51. P. 8468. https://doi.org/10.1021/ic301044m
  22. Feakes D.A., Shelly K., Knobler C.B., Hawthorne M.F. // Proc. Nati. Acad. Sci. USA. 1994. V. 91. P. 3029. https://doi.org/10.1073/pnas.91.8.3029
  23. Feakes D.A., Waller R.C., Hathaway D.K., Morton V.S. // Proc. Nati. Acad. Sci. USA. 1999. V. 96. P. 6406. https://doi.org/10.1073/pnas.96.11.6406
  24. Shelly K., Feakes D.A., Hawthorne M.F. et al. // Proc. Nati. Acad. Sci. USA. 1992. V. 89. P. 9039. https://doi.org/10.1073/pnas.89.19.9039
  25. Waller R.C., Booth R.E., Feakes D.A. // J. Inorg. Biochem. 2013. V. 124. P. 11. https://doi.org/10.1016/j.jinorgbio.2013.03.007
  26. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1169. https://doi.org/10.1134/S0036023622080022
  27. Avdeeva V.V., Kubasov A.S., Nikiforova S.E. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1406. https://doi.org/10.1134/S0036023623601794
  28. Il’inchik E.A., Polyanskaya T.M., Drozdova M.K. et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 1545. https://doi.org/10.1007/s11176-005-0464-y
  29. Avdeeva V.V., Kubasov A.S., Korolenko S.E. et al. // Polyhedron. 2022. V. 217. P. 115740. https://doi.org/10.1016/j.poly.2022.115740
  30. Avdeeva V.V., Privalov V.I., Kubasov A.S. et al. // Inorg. Chim. Acta. 2023. V. 555. P. 121564. https://doi.org/10.1016/j.ica.2023.121564
  31. Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
  32. Marcus Y. // J. Phys. Chem. 1987. V. 91. P. 4422. https://doi.org/10.1016/S0167-7322(97)00090-1
  33. Gutmann V. // Coord. Chem. Rev. 1976. V. 18. P. 225. https://doi.org/10.1016/S0010-8545(00)82045-7
  34. Zhang J., Zhang M., Zhao Y. et al. // J. Comput. Chem. 2006. V. 27. P. 1817. https://doi.org/10.1002/jcc.20511
  35. Kubasov A.S., Novikov I.V., Starodubets P.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 984. https://doi.org/10.1134/S0036023622070130
  36. Avdeeva V.V., Malinina E.A., Vologzhanina A.V. et al. // Inorg. Chim. Acta. 2020. V. 509. P. 119693.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. 11B{1H} NMR spectra of a reaction solution demonstrating the process of rearrangement of the [B20H18]2-anion from trans to iso in time to CH3CN.

Download (104KB)
3. Fig. 2. 11B{1H} NMR spectra of the reaction solution demonstrating the process of rearrangement of the anion [B20H18]2– from trans to iso in time in DMFA.

Download (218KB)
4. Fig. 3. 11B{1H} NMR spectra of the reaction solution demonstrating the process of rearrangement of the anion [B20H18]2- from trans to iso in time in DMSO.

Download (269KB)
5. Fig. 4. Graph of the process of transition of the anion [B20H18]2– from the trans isomer to iso.

Download (115KB)
6. Fig. 5. 11B{1H} NMR spectra of the reaction solution demonstrating the process of rearrangement of the [B20H18]2- anion from iso to trans with an increase in temperature in DMFA. The signal at +22 m.d., marked *, corresponds to the appearance of borates in the reaction solution.

Download (297KB)
7. Scheme 1. Hawthorne rearrangement under UV irradiation.

Download (78KB)
8. Scheme 2. Reverse Hawthorne rearrangement under the influence of temperature.

Download (78KB)
9. Supplement
Download (562KB)

Copyright (c) 2024 Russian Academy of Sciences