Analysis of Chemical and Phase Transformations during the Synthesis of Glass Ceramics based on Bismuth-Barium-Borate Glass and Er : YAG

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An original combination of thermal activation with exposure to a strong non-uniform electric field transforms a multicomponent solution into a precursor. The transformation of an aerosol into a finished mixture eliminates the stage of gel formation, its lengthy drying and subsequent polluting grinding, providing the molecular level of mixing of various components inherent in the sol-gel method. Using the method of synchronous thermal analysis (STA), the phase, chemical and other thermal manifestations of 1) the bismuth-barium borate part of the charge (0.2Bi2O3-0.6B2O3-0.2BaO), 2) the charge of (Er0.5Y0.5)AG components, and 3) the charge precursor, which initially combines all the necessary components of glass-ceramics, were studied. The Gibbs energy minimization method was used to determine the conditions for the formation of crystalline phases of garnet and yttrium borate, identified by X-ray phase analysis (XRD) data in glass ceramic samples formed at different temperatures from an ultrafine charge.

Full Text

Restricted Access

About the authors

A. D. Plekhovich

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Author for correspondence.
Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

A. M. Kutyin

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

K. V. Balueva

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

E. E. Rostokina

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

M. E. Komshina

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

K. F. Shumovskaya

Devyatykh Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Russian Federation, Nizhny Novgorod

References

  1. Plekhovich A.D., Kut’in A.M., Rostokina E.E. et al. // Int. Conf. Laser Optics (ICLO 2022). Proceedings, 2022. WeR9-p24. https://doi.org/10.1109/ICLO54117.2022.9840279
  2. Plekhovich A.D., Kut’in A.M., Rostokina E.E. et al. // Int. Conf. Laser Optics (ICLO 2022). Proceedings, 2022. WeR9-p33. https://doi.org/10.1109/ICLO54117.2022.9840272
  3. Belov G., Iorish V.S., Yungman V.S. // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916(99)00023-1
  4. Bourago N.G. // Proc. 7th Nordic Seminar on Computational Mechanics. Trondheim, Norway, 1994. P. 48. https://doi.org/10.13140/2.1.3798.3520
  5. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. М.: Металлургия, 1994. 352 c.
  6. CHEMCAD, Chemstations, Inc., USA. https://www.chemstations.com/
  7. Aspen HYSYS, Aspen Technology, USA. https://www.aspentech.com/en/products/engineering/aspen-hysys
  8. Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.31857/S0044457X20090123
  9. Piekarczyk W. // J. Cryst. Growth. 1981. V. 55. № 3. P. 543. https://doi.org/10.1016/0022-0248(81)90113-5
  10. Velmuzhov A.P., Sukhanov M.V., Anoshina D.E. et al. // J. Non-Cryst. Solids. 2022. V. 585. P. 121529. https://doi.org/10.1016/j.jnoncrysol.2022.121529
  11. Ежов Ю.С. // Журн. физ. химии. 2008. Т. 82. № 3. С. 575.
  12. Косяков В.И., Шестаков В.А., Косинова М.Л. // Журн. неорган. химии. 2018. Т. 63. № 6. С. 777. https://doi.org/10.7868/S0044457X1806017X
  13. Гончаров О.Ю., Канунникова О.М. // Журн. физ. химии. 2009. Т. 83. № 12. С. 2205.
  14. Chromčíková M., Liška M., Macháček J., Chovanec J. // J. Non-Cryst. Solids. 2014. V. 401. P. 237. https://doi.org/10.1016/j.jnoncrysol.2014.01.021
  15. Сенин А.В., Кузнецова О.В., Лыкасов А.А. // Журн. физ. химии. 2006. Т. 80. № 11. С. 1992. https://doi.org/10.1134/S003602440611015X
  16. Cruz R.A., Romero S.A., Vargas R.M. et al. // J. Non-Cryst. Solids. 2005. V. 351. № 16–17. P. 1359. https://doi.org/10.1016/j.jnoncrysol.2005.03.008
  17. Sha W. // J. Alloys Compd. 2001. V. 322. № 1–2. P. L17. https://doi.org/10.1016/S0925-8388(01)01258-0
  18. Sundman B., Jansson B., Andersson J.-O. // Calphad. 1985. V. 9. P. 153. http://dx.doi.org/10.1016/0364-5916(85)90021-5
  19. Velmuzhov A.P., Tyurina E.A., Sukhanov M.V. et al. // SeP. Purif. Technol. 2023. V. 324. P. 124532. https://doi.org/10.1016/j.seppur.2023.124532
  20. Егорышева А.В., Володин В.Д., Скориков В.М. // Неорган. материалы. 2008. Т. 44. № 11. С. 1397. https://doi.org/10.1134/S0020168508110228
  21. Кьяо В., Чен П. // Физика и химия стекла. 2010. Т. 36. № 3. С. 376. https://doi.org/10.1134/S1087659610030053
  22. Бобкова Н.М., Трусова Е.Е., Захаревич Г.Б. // Стекло и керамика. 2012. Т. 85. № 11. С. 9. https://doi.org/10.1007/s10717-013-9480-2
  23. Плехович А.Д., Ростокина Е.Е., Комшина М.Е. и др. // Неорган. материалы. 2022. Т. 58. № 7. С. 763. https://doi.org/10.31857/S0002337X22060094
  24. Plekhovich A.D., Kut’in A.M., Rostokina E.E. et al. // J. Non-Cryst. Solids. 2022. V. 588. P. 121629. https://doi.org/10.1016/j.jnoncrysol.2022.121629
  25. Lu B., Gai K., Wang Q., Zhao T. // Ceram. Int. 2023. V. 49. № 19. P. 32318. http://dx.doi.org/10.1016/j.ceramint.2023.07.098
  26. Плехович А.Д., Ростокина Е.Е., Кутьин А.М., Гаврищук Е.М. // Неорган. материалы. 2022. T. 58. № 12. С. 1353. http://dx.doi.org/10.31857/S0002337X22120090
  27. Балабанов С.С., Гаврищук Е.М., Дроботенко В.В. и др. // Неорган. материалы. 2014. Т. 50. № 10. С. 1114. http://dx.doi.org/10.7868/S0002337X14100030
  28. Балуева К.В., Плехович А.Д., Кутьин А.М., Суханов М.В. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1046. http://dx.doi.org/10.31857/S0044457X2108002X
  29. Воронин Г.Ф. Основы термодинамики. М.: Изд-во МГУ, 1987. 192 c.
  30. Binnewies M., Milke E. Thermochemical Data of Elements and Compounds. Weinheim: Wiley-VCH Verlag GmbH, 2002. 928 P. http://dx.doi.org/10.1002/9783527618347
  31. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1965–1982. Вып. 1–10.
  32. Robie R.A., Hemmingway B.S., Fisher J.R. // U.S. Geol. Survey Bull. 1978. V. 1452. https://doi.org/10.3133/b1452
  33. Barin I. Thermochemical Data of Pure Substances. N.Y., 1995.
  34. Konings R.J.M., van der Laan R.R., van Genderen A.C.G., van Miltenburg J.C. // Thermochim. Acta. 1998. V. 313. P. 201. https://doi.org/10.1016/S0040-6031(98)00261-5
  35. Chizhikov A.P., Bazhin P.M., Stolin A.M. // Lett. Mater. 2020. V. 10. P. 135. https://doi.org/10.22226/2410-3535-2020-2-135-140
  36. Zhou Y., Xiang H. // J. Am. Ceram. Soc. 2016. V. 99. P. 2742. https://doi.org/10.1111/jace.14261
  37. Ray S.P. // J. Am. Ceram. Soc. 1992. V. 75. P. 2605. https://doi.org/10.1111/j.1151-2916.1992.tb05622.x
  38. Liu L., Yang Y., Dong X. et al. // Eur. J. Inorg. Chem. 2015. P. 3328. https://doi.org/10.1002/ejic.201500399
  39. Bekker T.B., Rashchenko S.V., Seryotkin Y.V. et al. // J. Am. Ceram. Soc. 2017. V. 101. P. 450. https://doi.org/10.1111/jace.15194
  40. Pottier M.J. // Bull. Soc. Chim. Belg. 1974. V. 83. P. 235. https://doi.org/10.1002/bscb.19740830704
  41. Muehlberg M., Burianek M., Edongue H., Poetsch Ch. // J. Cryst. Growth. 2002. V. 237. P. 740. https://doi.org/10.1016/S0022-0248(01)01993-5
  42. Денисов В.М., Белоусова Н.В., Денисова Л.Т. // Журн. Сиб. фед. ун-та. Химия. 2013. № 2. С. 132.
  43. Wong-Ng W., Roth R.S., Vanderah T.A., McMurdie H.F. // J. Res. Natl. Inst. Stand. Technol. 2001. V. 106. P. 1097. https://doi.org/10.6028/jres.106.059
  44. Hovhannisyan M. Phase diagram of the ternary BaO–Bi2O3–B2O3 system: new compounds and glass ceramic characterization // Advances in Ferroelectrics. London, 2012. P. 127. https://doi.org/10.5772/52405

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. STA curve of an ultrafine glass sample 0.2Bi2O3–0.6B2O3–0.2BaO (blue line) and glass of the same composition in the shape of a disk from the work [24] (black line). Heating speed of 10 degrees/min

Download (122KB)
3. Fig. 2. Curves of Er0.5Y0.5AG charge samples from a hydrosol of the composition Al5(NO3)3(OH)12 × 3Y(OH)2(OOCCH3): the green lines correspond to a single-stage spray version of the synthesis of an ultrafine charge at 675 K, the pink lines correspond to a charge obtained by drying a binary hydrosol at 425 K in a drying cabinet followed by dispersion in a planetary mill

Download (101KB)
4. Fig. 3. X-ray images of glass ceramic samples after annealing at 1150, 1240, and 1425 K. The barcodes shown correspond to Y3BO6 (ISCD 84966), YBO3 (ISCD 100015) and Y3Al5O12 (ISCD 067103)

Download (167KB)
5. Fig. 4. Comparison of the curves of three variants of an ultrafine charge synthesized under the same conditions: 1 – glass 0.2Bi2O3–0.6B2O3–0.1), 2 – xerogel Er0.5Y0.5AG (Fig. 2) and 3 – charge precursor, initially combining all components of glass ceramics 0.46(0.2Bi2O3–0.6B2O3–0.2BaO)-0.54Er:YAG. The temperature range of spreading for curves 1 and 3 is highlighted in gray

Download (110KB)
6. Fig. 5. Equilibrium composition of glass crystals 0.54YAG + 0.46[0.2Bi2O3–0.6B2O3–0.2BaO]. In the lower part of the figure there are separately crystallizing phases and components of the associated solution (melt)

Download (398KB)

Copyright (c) 2024 Russian Academy of Sciences