GeTe–Bi2Te3–Te System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alloys of the GeTe–Bi2Te3–Te system, synthesized using a special technique that makes it possible to obtain them in a state as close as possible to equilibrium, have been studied using the methods of differential thermal and X-Ray diffraction analysis, as well as scanning electron microscopy. A solid-phase equilibria diagram, a projection of the liquidus surface, some polythermal sections and an isothermal section at 300 K of the phase diagram were constructed. The fields of primary crystallization of phases, types and coordinates of non— and monovariant equilibria are determined. It has been established that monovariant equilibria on curves emanating from the peritectic and eutectic points of the GeTe–Bi2Te3 boundary system undergo transformations at certain transition points. Near the tellurium corner of the concentration triangle, a cascade of invariant transition reactions has been identified, characterizing the joint crystallization of two-phase mixtures of telluride phases and elemental tellurium.

Full Text

Restricted Access

About the authors

E. N. Orujlu

Azerbaijan State Oil and Industry University

Author for correspondence.
Email: babanlymb@gmail.com
Azerbaijan, Baku

T. M. Alakbarova

Baku State University

Email: babanlymb@gmail.com
Azerbaijan, Baku

M. B. Babanly

Baku State University; Institute of Catalysis and Inorganic Chemistry; Azerbaijan State University of Economics

Email: babanlymb@gmail.com
Azerbaijan, Baku; Baku; Baku

References

  1. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, 1968. 616 с.
  2. Шевельков А.В. // Успехи химии. 2008. T. 77. № 1. С. 3. https://doi.org/10.1070/RC2008v077n01ABEH003746
  3. Шелимова Л.Е., Карпинский О.Г., Кретова и др. // Неорган. материалы. 1993. Т. 29. № 1. С. 54.
  4. Sootsman J.R., Chung D.Y., Kanatzidis M.G. // Angew. Chem. Int. Ed. 2009. V. 48. P. 8616. https://doi.org/10.1002/anie.200900598
  5. Kuznetsov V.L., Kuznetsova L.A., Rowe D.M. // J. Phys. D: Appl. Phys. 2001. V. 34. P. 700. https://doi.org/10.1088/0022-3727/34/5/306
  6. Ma W., Record M.-C., Tian J. et al. // Materials. 2021. V. 4. P. 4086. https://doi.org/10.3390/ma14154086
  7. Xu B., Feng T., Li Z. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 10938. https://doi.org/10.1002/anie.201805890
  8. Yang X., Su X., Yan Y. et al. // J. Inorg. Mater. 2021. V. 36. P. 75. http://dx.doi.org/10.15541/jim20200252
  9. Kihoi S.K., Shenoy U.S., Kahiu J.N. // ACS Appl. Electron. Mater. 2023. V. 5. № 8. P. 4504. https://doi.org/10.1021/acsaelm.3c00685
  10. Kane C.L., Moore J.E. // Physics World. 2011. V. 24. P. 32.
  11. Moore J.E. // Nature. 2010. V. 464. P. 194. https://doi.org/10.1038/nature08916
  12. Heremans J.P., Cava R.J., Samarth N. // Nat. Rev. Mater. 2017. V. 2. P. 17049. https://doi.org/10.1038/natrevmats.2017.49
  13. Politano A., Caputo M., Nappini S. et al. // J. Phys. Chem. C. 2014. V. 118. P. 21517. https://doi.org/10.1021/jp506444f
  14. Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // Phys. Rev. B: Condens. Matter. 2017. V. 96. P. 235124. https://doi.org/10.1103/PhysRevB.96.235124
  15. Hattori Y., Tokumoto Y., Edagawa K. // Phys. ReV. Mater. 2017. V. 1. P. 074201. https://doi.org/10.1103/PhysRevMaterials.1.074201
  16. Pacile D., Eremeev S.V., Caputo M. et al. // Phys. Status Solidi: Rapid Res. Lett. 2018. P. 1800341. https://doi.org/10.1002/pssr.201800341
  17. Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // Phys. ReV. B: Condens. Matter. 2019. V. 100. № 19. P. 195127. https://doi.org/10.1103/PhysRevB.100.195127
  18. Jahangirli Z.A., Alizade E.H., Aliev Z.S. et al. // J. Vacuum Sci. Technol. B. 2019. V. 37. P. 062910. https://doi.org/10.1116/1.5122702
  19. Wu Z., Liang G., Pang W.K. et al. // AdV. Mater. 2019. V. 32. № 2. P. 1905632. https://doi.org/10.1002/adma.201905632
  20. Klimovskikh I.I., Otrokov M.M., Estyunin D. et al. // npj Quantum Mater. 2020. V. 5. P. 54. https://doi.org/10.1038/s41535-020-00255-9
  21. Hattori Y., Tokumoto Y., Kimoto K. et al. // Sci ReP. 2020. V. 10. P. 7957. https://doi.org/10.1038/s41598-020-64742-6
  22. Tominaga J. // MRS Bulletin. 2018. V. 43. P. 347. http://dx.doi.org/10.1557/mrs.2018.94
  23. Jones R.O // Phys. ReV. B: Condens. Matter. 2020. V. 101. P. 024103. http://dx.doi.org/10.1103/PhysRevB.101.024103
  24. Cao T., Wang P., Simpson R.E. et al. // Prog. Quant. Electron. 2020. V. 74. P. 100299. https://doi.org/10.1016/j.pquantelec.2020.100299
  25. Wang D., Zhao L., Yu S. et al. // Mater. Today. 2023. V. 68. P. 334. https://doi.org/10.1016/j.mattod.2023.08.001
  26. Sun C.W., Youm M.S., Kim Y.T.. // J. Phys.: Condens. Matter. 2007. V. 19. P. 446004. https://doi.org/10.1088/0953-8984/19/44/446004
  27. Cui Y., Zhang Y., Cheng Zh. // AdV. Opt. Mater. 2023. V. 11. P. 2300481. https://doi.org/10.1002/adom.202300481
  28. Gavdush A.A., Komandin G.A., Bukin V.V. et al. // J. Appl. Phys. 2023. V. 134. P. 085103. https://doi.org/10.1063/5.0160772
  29. West D.R.F. Ternary Phase Diagrams in Materials Science. Boca Raton: CRC Press, 2019. 236 p.
  30. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
  31. Babanly M.B., Yusibov Yu.A., Imamaliyeva S.Z. et al. // J. Phase Equilib. Diff. 2024. https://doi.org/10.1007/s11669-024-01088-w
  32. Abrikosov N.X., Danilova-Dobryakova G.T. // IzV. Akad. Nauk SSSR. Neorg. Mater. 1965. № 1. P. 57.
  33. Abrikosov N.Kh., Danilova-Dobryakova G.T. // IzV. Akad. Nauk SSSR. Neorg. Mater. 1970. V. 6. № 10. P. 1798.
  34. Рогачева У.И., Лаптев С.А., Дудкин Л.Д. и др. // Изв. АН СССР. Неорган. материалы. 1986. T. 22. № 11. C.1827.
  35. Skoropanov A.S., Valevsky B.L., Skums V.F. et al. // Thermоchim. Acta. 1985. V. 90. P. 331. https://doi.org/10.1016/0040-6031(85)87110-0
  36. Shelimova L.E., Karpinsky O.G., Kretova M.A., Avilov E.S. // J. Alloys Compd. 1996. V. 243. № 1–2. P. 194. https://doi.org/10.1016/S0925-8388(96)02394-8
  37. Kosyakov V.I., Shestakov V.A., Shelimova L.E. et al. // Inorg. Mater. 2000. V. 36. № 3. P. 201. https://doi.org/10.1007/BF02757921
  38. Шелимова Л.Е., Томашик В.Н., Грыцив В.И. Диаграммы состояния в полупроводниковом материаловедении: системы на основе Si, Ge, Sn, Pb. М.: Наука, 1991. 368 с.
  39. Shelimova L.E., Karpinskii O.G., Kosyakov V.I. // J. Struct. Chem. 2000. V. 41. № 1. P. 81. https://doi.org/10.1007/BF02684732
  40. Shelimova L.E., Karpinskii O.G., Zemskov V.S. // Inorg. Mater. 2000. V. 36. № 3. P. 235. https://doi.org/10.1007/BF02757928
  41. Шелимова Л.Е., Карпинский О.Г., Константинов П.П. и др. // Неорган. материалы. 2004. T. 40. № 5. P. 530.
  42. Seidzade A.E., Orujlu E.N., Doert T., Babanly M.B. // J. Phase Equilib. Diff. 2021. V. 42. P. 373. https://doi.org/10.1007/s11669-021-00888-8
  43. Gojayeva I.M., Babanly V.I., Aghazade A.I., Orujlu E.N. // Azerbaijan Chem. J. 2022. № 2. P. 47. https://doi.org/10.32737/0005-2531-2022-2-47-53
  44. Orujlu E.N., Seidzade A.E., Babanly D.M. // J. Solid. State Chem. 2024. V. 330. P. 124494. https://doi.org/10.1016/j.jssc.2023.124494
  45. Alakbarova T.M., Meyer H.-J., Orujlu E.N. et al. // Phase Transit. 2021. V. 94. № 5. P. 366. https://doi.org/10.1080/01411594.2021.1937625
  46. Alakbarova T.M., Meyer H.-J., Orujlu E.N. et al. // Condens. Matter Interphases. 2022. V. 24. № 1. P. 11. https://doi.org/10.17308/kcmf.2022.24/9050
  47. Alakbarova T.M., Orujlu E.N., Babanly D.M. et al. // Phys. Chem. Solid State. 2022. V. 23. № 1. P. 25. https://doi.org/10.15330/pcss.23.1.25-33
  48. Orujlu E.N., Babanly D.M., Alakbarova T.M. et al. // J. Chem. Thermodyn. 2024 (accepted).
  49. Hasanova G.S., Aghazade A.I., Imamaliyeva S.Z. et al. // JOM. 2021. V. 73. P.1511. https://doi.org/10.1007/s11837-021-04621-1
  50. Hasanova G.S., Aghazade A.I., Babanly D.M. et al. // J. Therm. Anal. Calorim. 2021. https://doi.org/10.1007/s10973-021-10975-0
  51. Bletskan D.I. // J. Ovonic Research. 2005. V. 1. № 5. P. 53.
  52. Binary Alloy Phase Diagrams / Ed. Massalski T.B. Ohio: ASM International. Materials Park, 1990. V. 3. 3589 p.
  53. Lutsyk V.I., Vorob’eva V.P., Shodorova S.Ya. // Russ. J. Phys. Chem. 2015. V. 89. P. 2331. https://doi.org/10.1134/S0036024415130245
  54. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Phys. Chem. A. 2017. V. 91. P. 2593. https://doi.org/10.1134/S003602441713013

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phase diagram of the GeTe–Bi2Te3 system [46]. In the upper right corner there is a T-x diagram based on the data [32]

Download (272KB)
3. Fig. 2. Studied sections and alloy compositions

Download (117KB)
4. Fig. 3. Diagram of solid–phase equilibria in the GeTe-Bi2Te3–Te system

Download (172KB)
5. Fig. 4. Powder diffractograms of alloys shown in Fig. 3

Download (455KB)
6. Fig. 5. SEM images of some alloys shown in Fig. 3

Download (376KB)
7. Fig. 6. The surface of the liquidus of the GeTe–Bi2Te3–Te system. Primary crystallization fields: 1 — a1 (a2); 2 — β; 3 — Ge2Bi2Te5; 4 — GeBi2Te4; 5 — GeBi4Te7; 6 — GeBi6Te10; 7 — Te

Download (173KB)
8. Fig. 7. Ge2Bi2Te5–Te polythermal section of the GeTe–Bi2Te3–Te phase diagram

Download (84KB)
9. Fig. 8. The GeBi2Te4–Te polythermal section of the GeTe–Bi2Te3–Te phase diagram

Download (104KB)
10. Fig. 9. The GeBi4Te7–Te polythermal section of the GeTe–Bi2Te3–Te phase diagram

Download (90KB)
11. Fig. 10. The GeBi6Te10–Te polythermal section of the GeTe–Bi2Te3–Te phase diagram

Download (78KB)
12. Fig. 11. Polythermal section of the GeTe–[B] phase diagram of the GeTe–Bi2Te3–Te system

Download (221KB)
13. Fig. 12. Polythermal section Bi2Te3–[A] of the phase diagram of the GeTe–Bi2Te3–Te system

Download (294KB)

Copyright (c) 2024 Russian Academy of Sciences