Би- и октаядерные иодоантимонаты(III) с 1,2-диметилпиридинием и 3-бром-1-этилпиридинием: кристаллическая структура и физико-химические свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием SbI3 и иодидов соответствующих катионов в органических растворителях получены новые комплексы сурьмы (3-Br-1-EtPy)3[Sb2I9] (1) и (1,2-MePy)4[Sb8I28] (2). Особенности кристаллической структуры соединений установлены методом РСА. Комплексы термически стабильны до 200°C и имеют ширину запрещенной зоны ~2.2 эВ.

Полный текст

Доступ закрыт

Об авторах

И. А. Шенцева

Институт неорганической химии им. А.В. Николаева СО РАН

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск

К. А. Тагильцев

Институт неорганической химии им. А.В. Николаева СО РАН; Новосибирский государственный университет

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск; Новосибирск

А. Н. Усольцев

Институт неорганической химии им. А.В. Николаева СО РАН

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск

Н. А. Коробейников

Институт неорганической химии им. А.В. Николаева СО РАН; Новосибирский государственный университет

Автор, ответственный за переписку.
Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск; Новосибирск

В. Р. Шаяпов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск

М. Н. Соколов

Институт неорганической химии им. А.В. Николаева СО РАН

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск

С. А. Адонин

Институт неорганической химии им. А.В. Николаева СО РАН; Иркутский институт химии им. А.Е. Фаворского СО РАН

Email: korobeynikov@niic.nsc.ru
Россия, Новосибирск; Иркутск

Список литературы

  1. Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
  2. Möbs J., Stuhrmann G., Weigend F. et al. // Chem. A. Eur. J. 2023. V. 29. № 2. P. E202202931. https://doi.org/10.1002/chem.202202931
  3. Heine J., Peerless B., Dehnen S. et al. // Angew. Chem. Int. Ed. 2023. V. 62. № 24. https://doi.org/10.1002/anie.202218771
  4. Dehnhardt N., Böth A., Heine J. // Dalton Trans. 2019. V. 48. № 16. P. 5222. https://doi.org/10.1039/C9DT00575G
  5. Petrochenkova N.V., Storozhuk T.V., Mirochnik A.G. et al. // Russ. J. Coord. Chem. 2002. V. 28. № 7. P. 468. https://doi.org/10.1023/A:1016245126807
  6. Möbs J., Stuhrmann G., Wippermann S. et al. // Chempluschem. 2023. V. 88. № 6. P. E202200403. https://doi.org/10.1002/cplu.202200403
  7. Kojima A., Teshima K., Shirai Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
  8. Marchenko E.I., Fateev S.A., Goodilin E.A. et al. // Crystals. 2022. V. 12. № 5. P. 1. https://doi.org/10.3390/cryst12050657
  9. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
  10. Petrov A.A., Pellet N., Seo J.Y. et al. // Chem. Mater. 2017. V. 29. № 2. P. 587. https://doi.org/10.1021/acs.chemmater.6b03965
  11. Pitaro M., Tekelenburg E.K., Shao S. et al. // Adv. Mater. 2022. V. 34. № 1. https://doi.org/10.1002/adma.202105844
  12. Tutantsev A.S., Udalova N.N., Fateev S.A. et al. // J. Phys. Chem. C. 2020. V. 124. № 20. P. 11117. https://doi.org/10.1021/acs.jpcc.0c03661
  13. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
  14. Zhang X., Yu Z., Zhang D. et al. // Adv. Energy Mater. 2023. V. 13. № 33. P. 1. https://doi.org/10.1002/aenm.202201320
  15. Vasiliev A.A., Bykov A.V., Shestimerova T.A. et al. // Russ. Chem. Bull. 2023. V. 72. № 3. P. 641. https://doi.org/10.1007/s11172–023–3828–1
  16. Szklarz P., Jakubas R., Gągor A. et al. // Inorg. Chem. Front. 2020. V. 7. № 8. P. 1780. https://doi.org/10.1039/D0QI00137F
  17. Khan A., Han S., Liu X. et al. // Inorg. Chem. Front. 2018. V. 5. № 12. P. 3028. https://doi.org/10.1039/c8qi00902c
  18. Rowińska M., Piecha-Bisiorek A., Medycki W. et al. // Molecules. 2023. V. 28. № 9. P. 3894. https://doi.org/10.3390/molecules28093894
  19. Oswald I.W.H., Mozur E.M., Moseley I.P. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5818. https://doi.org/10.1021/acs.inorgchem.9b00170
  20. Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. https://doi.org/10.1002/aenm.202202209
  21. Wang C., Gu F., Zhao Z. et al. // Adv. Mater. 2020. V. 32. № 31. P. 1907623. https://doi.org/10.1002/adma.201907623
  22. Vargas B., Ramos E., Pérez-Gutiérrez E. et al. // J. Am. Chem. Soc. 2017. V. 139. № 27. P. 9116. https://doi.org/10.1021/jacs.7b04119
  23. Möbs J., Luy J.N., Shlyaykher A. et al. // Dalton Trans. 2021. V. 50. № 43. P. 15855. https://doi.org/10.1039/d1dt02828f
  24. Shentseva I.A., Usoltsev A.N., Abramov P.A. et al. // Mendeleev Commun. 2022. V. 32. № 6. P. 754. https://doi.org/10.1016/j.mencom.2022.11.015
  25. Shentseva I.A., Usoltsev A.N., Korobeynikov N.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7234. https://doi.org/10.3390/ijms24087234
  26. Chai W.-X., Wu L.-M., Li J.-Q. et al. // Inorg. Chem. 2007. V. 46. № 4. P. 1042. https://doi.org/10.1021/ic062091s
  27. Chai W.X., Wu L.M., Li J.Q. et al. // Inorg. Chem. 2007. V. 46. № 21. P. 8698. https://doi.org/10.1021/ic700904d
  28. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  29. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  31. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/JP8111556
  32. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. № 3. P. 230. https://doi.org/10.3390/cryst10030230
  33. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
  34. Semenov A.V., Baykov S.V., Soldatova N.S. et al. // Inorg. Chem. 2023. V. 62. № 15. P. 6128. https://doi.org/10.1021/acs.inorgchem.3c00229
  35. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V. et al. // J. Struct. Chem. 2021. V. 62. № 10. P. 1607. https://doi.org/10.1134/S0022476621100164
  36. Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.1016/j.molstruc.2016.04.072
  37. Zelenkov L.E., Ivanov D.M., Tyumentsev I.A. et al. // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 11870. https://doi.org/10.3390/ijms231911870
  38. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
  39. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  40. Pohl S., Saak W., Haase D. // Z. Naturforsch. B. 1987. V. 42. № 12. P. 1493. https://doi.org/10.1515/znb-1987–1201
  41. Pohl S., Lötz R., Haase D. et al. // Z. Naturforsch. B. 1988. V. 43. № 9. P. 1144. https://doi.org/10.1515/znb-1988–0910
  42. Carmalt C.J., Farrugia L.J., Norman N.C. // Z. Anorg. Allg. Chem. 1995. V. 621. № 1. P. 47. https://doi.org/10.1002/zaac.19956210110
  43. Carmalt C.J., Norman N.C., Farrugia L.J. // Polyhedron. 1993. V. 12. № 17. P. 2081. https://doi.org/10.1016/S0277–5387(00)84369–7
  44. Fachbereich Biologie-Chemie, Universität Gh., D.-Kassel W. et al. // Z. Naturforsch. B. 1996. V. 51. № 9. P. 1245. https://doi.org/10.1515/znb-1996–0906
  45. Usol’tsev A.N., Shentseva I.A., Shayapov V.R. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 10. P. 1482. https://doi.org/10.1134/S0036023621100193
  46. Peloquin A.J., McMillen C.D., Pennington W.T. // CrystEngComm. 2022. V. 24. № 35. P. 6251. https://doi.org/10.1039/D2CE00904H
  47. Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
  48. Heine J. // Dalton Trans. 2015. V. 44. № 21. P. 10069. https://doi.org/10.1039/C5DT00813A
  49. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/j.ccr.2015.10.010
  50. Kangjing Z., Xioaping L. // Z. Kristallogr. Cryst. Mater. 1990. V. 190. № 1–4. P. 97. https://doi.org/10.1524/zkri.1989.190.14.97
  51. Mukherjee A., Tothadi S., Desiraju G.R. // Acc. Chem. Res. 2014. V. 47. № 8. P. 2514. https://doi.org/10.1021/ar5001555
  52. Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9019. https://doi.org/10.1021/ic401215x
  53. Stoumpos C.C., Mao L., Malliakas C.D. et al. // Inorg. Chem. 2017. V. 56. № 1. P. 56. https://doi.org/10.1021/acs.inorgchem.6b02764
  54. Chen X., Jia M., Xu W. et al. // Adv. Opt. Mater. 2022. V. 51b. P. 1245. https://doi.org/10.1002/adom.202202153
  55. Jin Z., Zhang Z., Xiu J. et al. // J. Mater. Chem. A. 2020. V. 8. № 32. P. 16166. https://doi.org/10.1039/d0ta05433j

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Нековалентные взаимодействия (пунктир) в кристаллической структуре соединения 1. Атомы водорода не показаны

Скачать (104KB)
3. Рис. 2. Структурный тип {α-M8I28} (а); строение аниона соединения 2 (б). Атомы сурьмы пронумерованы

Скачать (271KB)
4. Рис. 3. Контакты I···I (показаны пунктиром) в анионной части комплекса 2

Скачать (355KB)
5. Рис. 4. Порошковые дифрактограммы соединений 1 (а) и 2 (б): рассчитанная из данных РСА (синяя) и экспериментальная (красная)

Скачать (173KB)
6. Рис. 5. Кривые ТГ, ДТГ и ДТА для соединений 1 (а) и 2 (б)

Скачать (126KB)
7. Рис. 6. Спектры диффузного отражения соединений 1 (а) и 2 (б)

Скачать (91KB)
8. Доп. материалы 1
Скачать (94KB)
9. Доп. материалы 2
Скачать (103KB)

© Российская академия наук, 2024