Low-Temperature Synthesis of Highly Dispersed Calcium Aluminate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new approach to prepare highly dispersed calcium aluminate at temperatures from 900°C with desired properties (bulk density starting from 0.015 g/cm3, particle size falling in the range of 7–42 described, which consists of step-by-step heat treatment of a concentrated aqueous solution of Al(NO3)3, Ca(NO3)2, and C6H8O7 in the molar ratio CaO : Al2O3 = 1 : 2. The main stages of the synthesis X-ray powder diffraction, IR spectroscopy, as well as scanning and transmission electron microscopies. dispersed calcium aluminate obtained using the developed approach has pronounced luminescent features.

Full Text

Restricted Access

About the authors

L. O. Kozlova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: kozzllova167@gmail.com
Russian Federation, Moscow

I. L. Voroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozzllova167@gmail.com
Russian Federation, Moscow

Yu. V. Ioni

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozzllova167@gmail.com
Russian Federation, Moscow

A. G. Son

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozzllova167@gmail.com
Russian Federation, Moscow

A. S. Popova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozzllova167@gmail.com
Russian Federation, Moscow

I. V. Kozerozhets

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozzllova167@gmail.com
Russian Federation, Moscow

References

  1. Zawrah M., Khalil N. // Ceram. Int. 2007. V. 33. P. 1419. https://doi.org/10.1016/j.ceramint.2006.04.022
  2. Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. № 212. P. 212. https://doi.org/10.3390/inorganics10110212
  3. Bai J., Liu J., Li C. et al. // Adv. Powder. Technol. 2011. V. 22. P. 72. https://doi.org/10.1016/j.apt.2010.03.013
  4. Ying S., Guan Z., Ofoegbu P.C. et al. // Environ. Technol. InnoV. 2022. V. 26. P. 102336. https://doi.org/10.1016/j.eti.2022.102336
  5. Pourgolmohammad B., Masoudpanah S.M., Aboutalebi M.R. // Ceram. Int. 2017. V. 43. P. 3797. https://doi.org/10.1016/j.ceramint.2016.12.027
  6. Fang L. // Int. J. Electrochem. Sci. 2017. V. 12. P. 218. https://doi.org/10.20964/2017.01.07
  7. Mu X., Chen Y., Edward Lester E. et al. // Microporous Mesoporous Mater. 2018. V. 270. P. 249. https://doi.org/10.1016/j.micromeso.2018.05.027
  8. Hussain S.K., Yu J.S. // J. Lumin. 2017. V. 183. P. 39. https://doi.org/10.1016/j.jlumin.2016.11.003
  9. Singh D., Sheoran S., Tanwar V. // Adv. Mater. Lett. 2017. V. 8. P. 656. https://doi.org/10.5185/amlett.2017.7011
  10. Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74. P. 1. https://doi.org/10.2138/rmg.2012.74.1
  11. Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1744. https://doi.org/10.1134/S0036023623602374
  12. Tian Y., Pan X., Yu H. et al. // J. Alloys Compd. 2016. V. 670. P. 96. https://doi.org/10.1016/j.jallcom.2016.02.059
  13. Emmett M. // Dial. Transplant. 2006. V. 35. P. 284. https://doi.org/10.1002/dat.20018
  14. Aitasalo T., Durygin A., Hölsä J. et al. // J. Alloys Compd. 2004. V. 380. P. 4. https://doi.org/10.1016/j.jallcom.2004.03.007
  15. Gülgün M., Popoola O., Waltraud M. et al. // J. Am. Ceram. Soc. 1997. V. 77. P. 531. https://doi.org/10.1111/j.1151-2916.1994.tb07026.x
  16. Yu H., Pan X., Wang B. et al. // Trans. Nonferrous Met. Soc. China. 2012. V. 22. P. 3108. https://doi.org/10.1016/S1003-6326(11)61578-1
  17. Zhang D., Pan X., Yu H. et al. // J. Mater. Sci. Technol. 2015. V. 31. P. 1244. https://doi.org/10.1016/j.jmst.2015.10.012
  18. Fujii K., Kondo W., Ueno H. et al. // J. Am. Ceram. Soc. 1986. V. 69. P. 361. https://doi.org/10.1111/j.1151-2916.1986.tb04748.x
  19. Edmonds R., Majumdar A. // Cem. Concr. Res. 1988. V. 18. P. 311. https://doi.org/10.1016/0008-8846(88)90015-4
  20. Chen G. // J. Alloys Compd. 2006. V. 416. P. 279. https://doi.org/10.1016/j.jallcom.2005.08.059
  21. Iftekhar S., Grins J., Svensson G. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 747. https://doi.org/10.1016/j.jeurceramsoc.2007.08.012
  22. Ridwan I., Asmi D. // AIP Conf. Proc. 2008. V. 989. P. 180. https://doi.org/10.1063/1.2906060
  23. Mohamed B., Sharp J. // Thermochim. Acta. 2002. V. 388. P. 105. https://doi.org/10.1016/S0040-6031(02)00035-7
  24. Jerebtsov D., Mikhailov G. // Ceram. Int. 2001. V. 27. P. 25. https://doi.org/10.1016/S0272-8842(00)00037-7
  25. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Powder Technol. 2023. V. 413. P. 118030. https://doi.org/10.1016/j.powtec.2022.118030
  26. Escribano P., Marchal M., Sanjuán L. et al. // J. Solid State Chem. 2005. V. 178. P. 1978. https://doi.org/10.1016/j.jssc.2005.04.001
  27. Stephan D., Wilhelm P. // Z. Anorg. Allg. Chem. 2004. V. 630. P. 1477. https://doi.org/10.1002/zaac.200400090
  28. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Ceram. Int. 2022. V. 48. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
  29. Ranjbar A., Rezaei M. // Adv. Powder. Technol. 2014. V. 25. P. 467. https://doi.org/10.1016/j.apt.2013.07.011
  30. Kingsley J.J., Patil K.C. // Mater. Lett. 1988. V. 6. P. 427. https://doi.org/10.1016/0167-577x(88)90045-6
  31. Goswami B., Ranil N., Ahlawat R. // J. Mountain Res. 2021. V. 16. P. 53. https://doi.org/10.51220/jmr.v16i2.8
  32. Goswami B., Rani N., Jangra N. et al. // J. Nanopart. Res. 2023. V. 25. P. 72. https://doi.org/10.1007/s11051-023-05718-1
  33. Kozerozhets I.V., Semenov E.A., Kozlova L.O. et al. // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
  34. Norton A.M., Nguyen H., Xiao N.L. et al. // RSC Adv. 2018. V. 8. P. 17101. https://doi.org/10.1039/c8ra03088j

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of synthesis of nanoscale CaAl2O4 powder

Download (104KB)
3. Fig. 2. IR absorption spectra of samples obtained at different stages of heat treatment of carbon-containing xerogel based on Ca2+ and Al3+ nitrates at temperatures 130 (1), 300 (2), 400 (3), 500 (4), 900 (5), 1000 (6) and 1100°С (7)

Download (206KB)
4. Fig. 3. Diffractograms of samples obtained after heat treatment of carbon-containing xerogel based on Ca2+ and Al3+ nitrates at temperatures 500 (1), 900 (2), 1000 (3), 1100 (4) and 1250°C (5)

Download (250KB)
5. Fig. 4. SEM images of a sample obtained after heat treatment of carbon-containing gel Ca2+ and Al3+ at temperatures of 300 (a) and 500°C (b)

Download (228KB)
6. Fig. 5. TEM (a) and SEM images (b) of a sample obtained after heat treatment of carbonaceous xerogel Ca2+ and Al3+ at a temperature of 900°C

Download (282KB)
7. Fig. 6. TEM (a) and SEM images (b) of a sample obtained after heat treatment of carbonaceous xerogel Ca2+ and Al3+ at a temperature of 1000°C

Download (322KB)
8. Fig. 7. Luminescence spectra of calcium aluminate samples at λexc = 238 (a) and 390 nm (b)

Download (186KB)

Copyright (c) 2024 Russian Academy of Sciences