Hierarchically Organized MoS2 Films as Promising Electrodes for Flexible Supercapacitors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of hierarchically organized MoS2 films on various substrates by a hydrothermal method was studied. The influence of synthesis conditions and the substrate (a glass or a flexible carbon paper substrate) on the crystal structure of sulfide films was determined using X-ray powder diffraction (XRD). Scanning electron microscopy (SEM) showed that the films on glass substrates comprised structurally different elements, namely a continuous dense layer of spherical nanoparticles on the surface of which hierarchically organized globular agglomerates of two types are arranged. A molybdenum disulfide shell about 1.5 μm thick, consisting of hierarchically organized nanosheets less than 10 nm thick, was formed on the surface of carbon fibers that make up the carbon paper. Elemental mapping was used to evaluate the homogeneity of the MoS2 film formed on the carbon paper. Atomic force microscopy (AFM) showed that an individual carbon fiber modified with a sulfide film had a mean square roughness of about 13 nm (over an area of about 100 μm2). According to Kelvin-probe force microscopy (KPFM) data, the electron work function of the material was 4.53 eV. The electrochemical characteristics of the manufactured flexible electrode based on a hierarchically organized molybdenum disulfide film were investigated. The specific capacitance and the stability of functional and microstructural properties of the manufactured supercapacitor electrode in 2000 charge–discharge cycles were evaluated. Thus, the proposed strategy is promising for the fabrication of efficient hierarchically organized MoS2 electrodes for flexible supercapacitors.

About the authors

T. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: egorova.offver@gmail.com
119991, Moscow, Russia

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: egorova.offver@gmail.com
119991, Moscow, Russia

A. A. Zemlyanukhin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia

Email: egorova.offver@gmail.com
119991, Moscow, Russia; 125047, Moscow, Russia

F. Yu. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: egorova.offver@gmail.com
119991, Moscow, Russia

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: egorova.offver@gmail.com
119991, Moscow, Russia

N. T. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: egorova.offver@gmail.com
119991, Moscow, Russia

References

  1. Sun B., Long Y.-Z., Chen Z.-J. et al. // J. Mater. Chem. C 2014. V. 2. № 7. P. 1209. https://doi.org/10.1039/C3TC31680G
  2. Gillan L., Hiltunen J., Behfar M.H. et al. // Jpn. J. Appl. Phys. 2022. V. 61. P. SE0804. https://doi.org/10.35848/1347-4065/ac586f
  3. Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
  4. Wei S., Zhou R., Wang G. // ACS Omega. 2019. V. 4. № 14. P. 15780. https://doi.org/10.1021/acsomega.9b01058
  5. He X., Zhang X. // J. Energy Storage. 2022. V. 56. P. 106023. https://doi.org/10.1016/j.est.2022.106023
  6. Thangappan R., Kalaiselvam S., Elayaperumal A. et al. // Dalt. Trans. 2016. V. 45. № 6. P. 2637. https://doi.org/10.1039/C5DT04832J
  7. Riaz A., Sarker M.R., Saad M.H.M. et al. // Sensors. 2021. V. 21. № 15. P. 5041. https://doi.org/10.3390/s21155041
  8. Saraf M., Natarajan K., Mobin S.M. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 19. P. 16588. https://doi.org/10.1021/acsami.8b04540
  9. Karade S.S., Dubal D.P., Sankapal B.R. // RSC Adv. 2016. V. 6. № 45. P. 39159. https://doi.org/10.1039/C6RA04441G
  10. Zhang Y.-Z., Wang Y., Cheng T. et al. // Chem. Soc. Rev. 2019. V. 48. № 12. P. 3229. https://doi.org/10.1039/C7CS00819H
  11. Dubal D.P., Kim J.G., Kim Y. et al. // Energy Technol. 2014. V. 2. № 4. P. 325. https://doi.org/10.1002/ente.201300144
  12. Chalangar E., Björk E.M., Pettersson H. // Sci. Rep. 2022. V. 12. № 1. P. 11843. https://doi.org/10.1038/s41598-022-15771-w
  13. Joseph N., Shafi P.M., Bose A.C. // Energy Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
  14. Guo C., Pan J., Li H. et al. // J. Mater. Chem. C. 2017. V. 5. № 41. P. 10855. https://doi.org/10.1039/C7TC03749J
  15. Quilty C.D., Housel L.M., Bock D.C. et al. // ACS Appl. Energy Mater. 2019. V. 2. № 10. P. 7635. https://doi.org/10.1021/acsaem.9b01538
  16. Acerce M., Voiry D., Chhowalla M. // Nat. Nanotechnol. 2015. V. 10. № 4. P. 313. https://doi.org/10.1038/nnano.2015.40
  17. Krishnan U., Kaur M., Singh K. et al. // Superlattices Microstruct. 2019. V. 128. P. 274. https://doi.org/10.1016/j.spmi.2019.02.005
  18. Gupta D., Chauhan V., Kumar R. // Inorg. Chem. Commun. 2022. V. 144. P. 109848. https://doi.org/10.1016/j.inoche.2022.109848
  19. Tao J., Chai J., Lu X. et al. // Nanoscale. 2015. V. 7. № 6. P. 2497. https://doi.org/10.1039/C4NR06411A
  20. Taherkhani A., Shahbazi M. // Mater. Today Commun. 2023. V. 34. P. 105092. https://doi.org/10.1016/j.mtcomm.2022.105092
  21. Serpini E., Rota A., Ballestrazzi A. et al. // Surf. Coatings Technol. 2017. V. 319. P. 345. https://doi.org/10.1016/j.surfcoat.2017.04.006
  22. Cho Y.J., Sim Y., Lee J.-H. et al. // Curr. Appl. Phys. 2023. V. 45. P. 99. https://doi.org/10.1016/j.cap.2022.11.008
  23. Seravalli L., Bosi M. // Materials (Basel). 2021. V. 14. № 24. P. 7590. https://doi.org/10.3390/ma14247590
  24. Aspiotis N., Morgan K., März B. et al. // npj 2D Mater. Appl. 2023. V. 7. № 1. P. 18. https://doi.org/10.1038/s41699-023-00379-z
  25. Cho A.-J., Ryu S.H., Yim J.G. et al. // J. Mater. Chem. C. 2022. V. 10. № 18. P. 7031. https://doi.org/10.1039/D2TC01156E
  26. Duraisamy S., Ganguly A., Sharma P.K. et al. // ACS Appl. Nano Mater. 2021. V. 4. № 3. P. 2642. https://doi.org/10.1021/acsanm.0c03274
  27. Askari M.B., Kalourazi A.F., Seifi M. et al. // Optik (Stuttg). 2018. V. 174. P. 154. https://doi.org/10.1016/j.ijleo.2018.08.035
  28. Du H., Liu D., Li M. et al. // RSC Adv. 2015. V. 5. № 97. P. 79724. https://doi.org/10.1039/C5RA08424E
  29. Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
  30. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
  31. Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. Р. 1304https://doi.org/10.1134/S0036023620090181
  32. Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1779. https://doi.org/10.1134/S0036023621120160
  33. Simonenko T.L., Bocharova V.A., Simonenko N.P. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1633. https://doi.org/10.1134/S0036023621110176
  34. Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Ceram. Int. 2022. V. 48. № 15. P. 22401. https://doi.org/10.1016/j.ceramint.2022.04.252
  35. Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124
  36. Qiu X., Zhang T., Dai Z. et al. // Ionics (Kiel). 2022. V. 28. № 2. P. 939. https://doi.org/10.1007/s11581-021-04379-1
  37. Fan H., Wu R., Liu H. et al. // J. Mater. Sci. 2018. V. 53. № 14. P. 10302. https://doi.org/10.1007/s10853-018-2266-8
  38. Yan J., Huang Y., Zhang X. et al. // Nano-Micro Lett. 2021. V. 13. № 1. P. 114. https://doi.org/10.1007/s40820-021-00646-y
  39. Chen Y.-L., Tsai C.-H., Chen M.-Y. et al. // Materials (Basel). 2018. V. 11. № 12. P. 2587. https://doi.org/10.3390/ma11122587
  40. Samy O., Zeng S., Birowosuto M.D. et al. // Crystals. 2021. V. 11. № 4. P. 355. https://doi.org/10.3390/cryst11040355
  41. Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
  42. Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002
  43. Priya S., Mandal D., Chowdhury A. et al. // Nanoscale Adv. 2023. V. 5. № 4. P. 1172. https://doi.org/10.1039/D2NA00807F
  44. Ranjan B., Sharma G.K., Kaur D. // Appl. Phys. Lett. 2021. V. 118. № 22. https://doi.org/10.1063/5.0048272
  45. Ali G.A.M., Thalji M.R., Soh W.C. et al. // J. Solid State Electrochem. 2020. V. 24. № 1. P. 25. https://doi.org/10.1007/s10008-019-04449-5
  46. Chen W., Gu J., Liu Q. et al. // Nat. Nanotechnol. 2022. V. 17. № 2. P. 153. https://doi.org/10.1038/s41565-021-01020-0
  47. Zhou R., Wei S., Liu Y. et al. // Sci. Rep. 2019. V. 9. № 1. P. 3980. https://doi.org/10.1038/s41598-019-40672-w
  48. Kumar S., Kumar V., Devi R. et al. // Adv. Mater. Sci. Eng. 2022. V. 2022. P. 1. https://doi.org/10.1155/2022/1288623
  49. Manuraj M., Kavya Nair K.V., Unni K.N.N. et al. // J. Alloys Compd. 2020. V. 819. P. 152963. https://doi.org/10.1016/j.jallcom.2019.152963
  50. Dhas S.D., Maldar P.S., Patil M.D. et al. // Vacuum. 2020. V. 181. P. 109646. https://doi.org/10.1016/j.vacuum.2020.109646
  51. Quan T., Härk E., Xu Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 3. P. 3979. https://doi.org/10.1021/acsami.0c19506
  52. Yu X., Du R., Li B. et al. // Appl. Catal. B Environ. 2016. V. 182. P. 504. https://doi.org/10.1016/j.apcatb.2015.09.003
  53. Zhang F., Tang Y., Liu H. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 7. P. 4691. https://doi.org/10.1021/acsami.5b11705
  54. Tobis M., Sroka S., Frąckowiak E. // Front. Energy Res. 2021. V. 9. https://doi.org/10.3389/fenrg.2021.647878

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (267KB)
3.

Download (6MB)
4.

Download (146KB)
5.

Download (3MB)
6.

Download (3MB)
7.

Download (1MB)
8.

Download (468KB)
9.

Download (1MB)

Copyright (c) 2023 Т.Л. Симоненко, Н.П. Симоненко, А.А. Землянухин, Ф.Ю. Горобцов, Е.П. Симоненко, Н.Т. Кузнецов