Epoxide-Mediated Synthesis of Two-Component Al2O3–TiO2 Aerogels and Their UV-Protective Characteristics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new method was proposed to synthesize aerogels based on Al2O3–TiO2 by the hydrolysis of mixed solutions of titanium tetrachloride and aluminum nitrate in the presence of propylene oxide, followed by supercritical drying of the obtained gels. The aerogels are characterized by a high specific surface area (140–500 m2/g) and a high specific porosity (1.7–2.7 cm3/g). Heat treatment of the Al2O3–TiO2 aerogels at temperatures up to 600°C does not lead to crystallization of titanium dioxide, whereas the formation of crystalline anatase in aerogels based on individual TiO2 is observed already at a temperature of 450°C. Using the standardized ISO 24443-2016 method, the SPF value of the obtained materials was determined, which turned out to be comparable to the characteristics of a commercial inorganic UV filter based on TiO2 (Kronos 1171). At the same time, the photocatalytic activity of the Al2O3–TiO2 aerogels turned out to be more than 120 times lower than the similar characteristics of the commercial UV filter based on titanium dioxide. The results obtained demonstrated that the Al2O3–TiO2 aerogels are promising as components of sunscreens.

Sobre autores

L. Polevoi

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia

I. Kolesnik

Moscow State University

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia

G. Kopitsa

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”

Email: a.baranchikov@yandex.ru
199034, St. Petersburg, Russia; 188300, Gatchina, Leningrad oblast, Russia

M. Golikova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia

N. Tsvigun

Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119333, Moscow, Russia

T. Khamova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
199034, St. Petersburg, Russia

A. Sergeeva

Institute of Volcanology and Seismology, Far-Eastern Branch, Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
683006, Petropavlovsk-Kamchatsky, Russia

Yu. Gorshkova

Joint Institute for Nuclear Research

Email: a.baranchikov@yandex.ru
141980, Dubna, Moscow oblast, Russia

D. Sandzhieva

Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

B. Ubushaeva

Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

A. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: a.baranchikov@yandex.ru
119991, Moscow, Russia

V. Ivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Moscow State University

Autor responsável pela correspondência
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. Jin S.-G., Padron F., Pfeifer G.P. // ACS Omega. 2022. V. 7. № 37. P. 32936. https://doi.org/10.1021/acsomega.2c04424
  2. Guerra K.C., Zafar N., Crane J.S. Skin Cancer Prevention // StatPearls. 2023. Treasure Island: StatPearls Publishing, 2023. https://pubmed.ncbi.nlm.nih.gov/ 30137812/
  3. Nohynek G.J., Schaefer H. // Regul. Toxicol. Pharmacol. 2001. V. 33. № 3. P. 285. https://doi.org/10.1006/rtph.2001.1476
  4. Gonzalez H., Tarras-Wahlberg N., Strömdahl B. et al. // BMC Dermatol. 2007. V. 7. № 1. P. 1. https://doi.org/10.1186/1471-5945-7-1
  5. Gabard B. Sunscreens // Cosmetics. Berlin: Springer, 1999. P. 116. https://doi.org/10.1007/978-3-642-59869-2_9
  6. Bryden A.M., Moseley H., Ibbotson S.H. et al. // Br. J. Dermatol. 2006. V. 155. № 4. P. 737. https://doi.org/10.1111/j.1365-2133.2006.07458.x
  7. Victor F.C., Cohen D.E., Soter N.A. // J. Am. Acad. Dermatol. 2010. V. 62. № 4. P. 605. https://doi.org/10.1016/j.jaad.2009.06.084
  8. Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
  9. Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
  10. Morsella M., D’Alessandro N., Lanterna A.E. et al. // ACS Omega. 2016. V. 1. № 3. P. 464. https://doi.org/10.1021/acsomega.6b00177
  11. Nakata K., Fujishima A. // J. Photochem. Photobiol., C: Photochem. Rev. 2012. V. 13. № 3. P. 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  12. Horie M., Sugino S., Kato H. et al. // Toxicol. Mech. Methods. 2016. V. 26. № 4. P. 284. https://doi.org/10.1080/15376516.2016.1175530
  13. Sun S., Song P., Cui J. et al. // Catal. Sci. Technol. 2019. V. 9. № 16. P. 4198. https://doi.org/10.1039/C9CY01020C
  14. Jang E., Sridharan K., Park Y.M. et al. // Chem. A Eur. J. 2016. V. 22. № 34. P. 12022. https://doi.org/10.1002/chem.201600815
  15. Becker L.C., Boyer I., Bergfeld W.F. et al. // Int. J. Toxicol. 2016. V. 35. № 3. P. 16S. https://doi.org/10.1177/1091581816677948
  16. Cassin G., Diridollou S., Flament F. et al. // Int. J. Cosmet. Sci. 2018. V. 40. № 1. P. 58. https://doi.org/10.1111/ics.12433
  17. Yorov K.E., Kolesnik I.V., Romanova I.P. et al. // J. Supercrit. Fluids. 2021. V. 169. P. 105099. https://doi.org/10.1016/j.supflu.2020.105099
  18. Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
  19. Hüsing N., Schubert U. // Angew. Chem. Int. Ed. 1998. V. 37. № 1–2. P. 22. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  20. Feinle A., Elsaesser M.S., Hüsing N. // Chem. Soc. Rev. 2016. V. 45. № 12. P. 3377. https://doi.org/10.1039/C5CS00710K
  21. Yorov K.E., Baranchikov A.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 2. P. 89. https://doi.org/10.1134/S1070328422020014
  22. Singh P., Nanda A. // Int. J. Cosmet. Sci. 2014. V. 36. № 3. P. 273. https://doi.org/10.1111/ics.12124
  23. Chen L., Zhu J., Liu Y.-M. et al. // J. Mol. Catal. A: Chem. 2006. V. 255. № 1–2. P. 260. https://doi.org/10.1016/j.molcata.2006.04.043
  24. Moussaoui R., Elghniji K., ben Mosbah M. et al. // J. Saudi Chem. Soc. 2017. V. 21. № 6. P. 751. https://doi.org/10.1016/j.jscs.2017.04.001
  25. Donėlienė J., Fataraitė-Urbonienė E., Danchova N. et al. // Gels. 2022. V. 8. № 7. P. 422. https://doi.org/10.3390/gels8070422
  26. Gaweł B., Gaweł K., Øye G. // Materials. 2010. V. 3. № 4. P. 2815. https://doi.org/10.3390/ma3042815
  27. Lermontov S.A., Straumal E.A., Mazilkin A.A. et al. // Mater. Lett. 2017. V. 215. P. 19. https://doi.org/10.1016/j.matlet.2017.12.031
  28. Yorov K.E., Sipyagina N.A., Malkova A.N. et al. // Inorg. Mater. 2016. V. 52. № 2. P. 163. https://doi.org/10.1134/S0020168516020035
  29. Yorov K.E., Sipyagina N.A., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 11. P. 1339. https://doi.org/10.1134/S0036023616110048
  30. Baranchikov A.E., Kopitsa G.P., Yorov K.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 874. https://doi.org/10.1134/S003602362106005X
  31. Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
  32. Gash A.E., Tillotson T.M., Satcher Jr J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
  33. Itoh H., Tabata T., Kokitsu M. et al. // J. Ceram. Soc. Jpn. 1993. V. 101. № 1177. P. 1081. https://doi.org/10.2109/jcersj.101.1081
  34. Wei T.-Y., Chen C.-H., Chang K.-H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
  35. Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
  36. Straumal E.A., Ivanov V.K., Malkova A.N. et al. // J. Sol-Gel Sci. Technol. 2017. V. 84. № 3. P. 377. https://doi.org/10.1007/s10971-017-4429-5
  37. Lermontov S.A., Yurkova L.L., Straumal E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 303. https://doi.org/10.1134/S0036023618030142
  38. Yorov K.E., Yapryntsev A.D., Baranchikov A.E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 86. № 2. P. 400. https://doi.org/10.1007/s10971-018-4647-5
  39. Kameneva S.V., Yorov K.E., Kamilov R.K. et al. // J. Sol-Gel Sci. Technol. 2023. V. 107. P. 586.https://doi.org/10.1007/s10971-023-06149-z
  40. Rouquerol J., Llewellyn P., Rouquerol F. // Stud. Surf. Sci. Catal. 2007. V. 160. P. 49. https://doi.org/10.1016/S0167-2991(07)80008-5
  41. Фиалков Ю.Я. Растворитель как средство управления химическим процессом. М., 1990.
  42. Kuzin E.N., Krutchinina N.E. // Inorg. Mater. 2019. V. 55. № 8. P. 834. https://doi.org/10.1134/S0020168519080065
  43. Wang T.-H., Navarrete-López A.M., Li S. et al. // J. Phys. Chem. A 2010. V. 114. № 28. P. 7561. https://doi.org/10.1021/jp102020h
  44. Archambault J., Rivest R. // Can. J. Chem. 1958. V. 36. № 11. P. 1461. https://doi.org/10.1139/v58-216
  45. Cottineau T., Richard-Plouet M., Rouet A. et al. // Chem. Mater. 2008. V. 20. № 4. P. 1421. https://doi.org/10.1021/cm702531q
  46. Emons H.-H., Janneck E., Pollmer K. // Z. Anorg. Allg. Chem. 1984. V. 511. № 4. P. 135. https://doi.org/10.1002/zaac.19845110415
  47. Suzuki H., Ishiguro S.-I. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 5. P. 586. https://doi.org/10.1107/S0108270197018817
  48. Titanium(IV), Zirconium, Hafnium and Thorium // Hydrolys. Met. Ions. Weinheim: Wiley, 2016. P. 433. https://doi.org/10.1002/9783527656189.ch10
  49. Aluminium, Gallium, Indium and Thallium // Hydrolys. Met. Ions. Hydrolys. Met. Ions, Weinheim: Wiley, 2016. P. 757. https://doi.org/10.1002/9783527656189.ch13
  50. Gash A.E., Tillotson T.M., Satcher J.H. et al. // Chem. Mater. 2001. V. 13. № 3. P. 999. https://doi.org/10.1021/cm0007611
  51. Du X., Wang Y., Su X. et al. // Powder Technol. 2009. V. 192. № 1. P. 40. https://doi.org/10.1016/j.powtec.2008.11.008
  52. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  53. Gao M., Liu B., Zhao P. et al. // J. Sol-Gel Sci. Technol. 2019. V. 91. № 3. P. 514. https://doi.org/10.1007/s10971-019-05057-5
  54. Guinier A., Fournet G. Small-Angle X-Ray Scattering. N.Y.: John Wiley & Sons Inc., 1955. https://doi.org/10.1002/pol.1956.120199326
  55. Teixeira J. Experimental Methods for Studying Fractal Aggregates // Growth Form. Dordrecht: Springer, 1986. P. 145. https://doi.org/10.1007/978-94-009-5165-5_9
  56. Kim D., Jung J., Ihm J. // Nanomaterials. 2018. V. 8. № 6. P. 375. https://doi.org/10.3390/nano8060375
  57. Keysar S., De Hazan Y., Cohen Y. et al. // J. Mater. Res. 1997. V. 12. № 2. P. 430. https://doi.org/10.1557/JMR.1997.0063
  58. Meng F., Schlup J.R., Fan L.T. // Chem. Mater. 1997. V. 9. № 11. P. 2459. https://doi.org/10.1021/cm9700662
  59. Chane-Ching J.-Y., Klein L.C // J. Am. Ceram. Soc. 1988. V. 71. № 1. P. 86. https://doi.org/10.1111/j.1151-2916.1988.tb05765.x
  60. Catauro M., Tranquillo E., Dal Poggetto G. et al. // Materials. 2018. V. 11. № 12. https://doi.org/10.3390/ma11122364
  61. Diko M. // Acta Geodyn. Geomater. 2015. P. 149. https://doi.org/10.13168/AGG.2015.0052
  62. Feng G., Jiang F., Jiang W. et al. // Ceram. Int. 2019. V. 45. № 15. P. 18704. https://doi.org/10.1016/j.ceramint.2019.06.096
  63. Kirillova S.A., Almjashev V.I., Gusarov V. V. // Russ. J. Inorg. Chem. 2011. V. 56. № 9. P. 1464. https://doi.org/10.1134/S0036023611090117
  64. Dransfield G.P. // Radiat. Prot. Dosimetry. 2000. V. 91. № 1. P. 271. https://doi.org/10.1093/oxfordjournals.rpd.a033216
  65. Kim M.G., Kang J.M., Lee J.E. et al. // ACS Omega. 2021. V. 6. № 16. P. 10668. https://doi.org/10.1021/acsomega.1c00043
  66. Nishizawa H., Aoki Y. // J. Solid State Chem. 1985. V. 56. № 2. P. 158. https://doi.org/10.1016/0022-4596(85)90052-0
  67. Bachina A.K., Almjasheva O.V., Popkov V.I. et al. // J. Cryst. Growth 2021. V. 576. P. 126371. https://doi.org/10.1016/j.jcrysgro.2021.126371
  68. Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosyst. Physics, Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
  69. Lin H., Li L., Zhao M. et al. // J. Am. Chem. Soc. 2012. V. 134. № 20. P. 8328. https://doi.org/10.1021/ja3014049
  70. Hammouda B. // J. Appl. Crystallogr. 2010. V. 43. № 4. P. 716. https://doi.org/10.1107/S0021889810015773
  71. Schmidt P.W., Avnir D., Levy D. et al. // J. Chem. Phys. 1991. V. 94. № 2. P. 1474. https://doi.org/10.1063/1.460006
  72. Pogorelov V., Doroshenko I., Pitsevich G. et al. // J. Mol. Liq. 2017. V. 235. P. 7. https://doi.org/10.1016/j.molliq.2016.12.037
  73. Roscoe J.M., Abbatt J.P.D. // J. Phys. Chem. A. 2005. V. 109. № 40. P. 9028. https://doi.org/10.1021/jp050766r
  74. Thomas K., Hoggan P.E., Mariey L. et al. // Catal. Lett. 1997. V. 46. № 1/2. P. 77. https://doi.org/10.1023/A:1019017123596
  75. Hanaor D.A.H., Sorrell C.C. // J. Mater. Sci. 2011. V. 46. № 4. P. 855. https://doi.org/10.1007/s10853-010-5113-0
  76. Akkaya Arier U.O., Tepehan F.Z. // Compos. Part B Eng. 2014. V. 58. P. 147. https://doi.org/10.1016/j.compositesb.2013.10.023
  77. Hanini F., Bouabellou A., Bouachiba Y. et al. // IOSR J. Eng. 2013. V. 3. № 11. P. 21. https://doi.org/10.9790/3021-031112128
  78. Riaz S., Sajid-ur-Rehman, Abutalib M. et al. // J. Electron. Mater. 2016. V. 45. № 10. P. 5185. https://doi.org/10.1007/s11664-016-4754-4
  79. Filatova E.O., Konashuk A.S. // J. Phys. Chem. C. 2015. V. 119. № 35. P. 20755. https://doi.org/10.1021/acs.jpcc.5b06843
  80. Prange M.P., Zhang X., Ilton E.S. et al. // J. Chem. Phys. 2018. V. 149. № 2. P. 024502. https://doi.org/10.1063/1.5037104
  81. Tzompantzi F., Piña Y., Mantilla A. et al. // Catal. Today. 2014. V. 220–222. P. 49. https://doi.org/10.1016/j.cattod.2013.10.027
  82. Carp O., Huisman C.L., Reller A. // Prog. Solid State Chem. 2004. V. 32. № 1–2. P. 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (128KB)
3.

Baixar (108KB)
4.

Baixar (510KB)
5.

Baixar (155KB)
6.

Baixar (65KB)
7.

Baixar (1MB)
8.

Baixar (101KB)
9.

Baixar (356KB)
10.

Baixar (118KB)
11.

Baixar (347KB)
12.

Baixar (79KB)

Declaração de direitos autorais © Л.А. Полевой, И.В. Колесник, Г.П. Копица, М.В. Голикова, Н.В. Цвигун, Т.В. Хамова, А.В. Сергеева, Ю.Е. Горшкова, Д.А. Санджиева, Б.В. Убушаева, А.Е. Баранчиков, В.К. Иванов, 2023