Epoxide-Mediated Synthesis of Two-Component Al2O3–TiO2 Aerogels and Their UV-Protective Characteristics
- Autores: Polevoi L.A.1, Kolesnik I.V.2, Kopitsa G.P.3,4, Golikova M.V.1, Tsvigun N.V.5, Khamova T.V.3, Sergeeva A.V.6, Gorshkova Y.E.7, Sandzhieva D.A.8,9, Ubushaeva B.V.8,9, Baranchikov A.E.1, Ivanov V.K.1,2
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow State University
- Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”
- Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences
- Institute of Volcanology and Seismology, Far-Eastern Branch, Russian Academy of Sciences
- Joint Institute for Nuclear Research
- Gubkin Russian State University of Oil and Gas (National Research University)
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Edição: Volume 68, Nº 12 (2023)
- Páginas: 1831-1848
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666106
- DOI: https://doi.org/10.31857/S0044457X23601505
- EDN: https://elibrary.ru/XENVOW
- ID: 666106
Citar
Resumo
A new method was proposed to synthesize aerogels based on Al2O3–TiO2 by the hydrolysis of mixed solutions of titanium tetrachloride and aluminum nitrate in the presence of propylene oxide, followed by supercritical drying of the obtained gels. The aerogels are characterized by a high specific surface area (140–500 m2/g) and a high specific porosity (1.7–2.7 cm3/g). Heat treatment of the Al2O3–TiO2 aerogels at temperatures up to 600°C does not lead to crystallization of titanium dioxide, whereas the formation of crystalline anatase in aerogels based on individual TiO2 is observed already at a temperature of 450°C. Using the standardized ISO 24443-2016 method, the SPF value of the obtained materials was determined, which turned out to be comparable to the characteristics of a commercial inorganic UV filter based on TiO2 (Kronos 1171). At the same time, the photocatalytic activity of the Al2O3–TiO2 aerogels turned out to be more than 120 times lower than the similar characteristics of the commercial UV filter based on titanium dioxide. The results obtained demonstrated that the Al2O3–TiO2 aerogels are promising as components of sunscreens.
Palavras-chave
Sobre autores
L. Polevoi
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia
I. Kolesnik
Moscow State University
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia
G. Kopitsa
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”
Email: a.baranchikov@yandex.ru
199034, St. Petersburg, Russia; 188300, Gatchina, Leningrad oblast, Russia
M. Golikova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia
N. Tsvigun
Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119333, Moscow, Russia
T. Khamova
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
199034, St. Petersburg, Russia
A. Sergeeva
Institute of Volcanology and Seismology, Far-Eastern Branch, Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
683006, Petropavlovsk-Kamchatsky, Russia
Yu. Gorshkova
Joint Institute for Nuclear Research
Email: a.baranchikov@yandex.ru
141980, Dubna, Moscow oblast, Russia
D. Sandzhieva
Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
B. Ubushaeva
Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
A. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Moscow State University
Autor responsável pela correspondência
Email: a.baranchikov@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
Bibliografia
- Jin S.-G., Padron F., Pfeifer G.P. // ACS Omega. 2022. V. 7. № 37. P. 32936. https://doi.org/10.1021/acsomega.2c04424
- Guerra K.C., Zafar N., Crane J.S. Skin Cancer Prevention // StatPearls. 2023. Treasure Island: StatPearls Publishing, 2023. https://pubmed.ncbi.nlm.nih.gov/ 30137812/
- Nohynek G.J., Schaefer H. // Regul. Toxicol. Pharmacol. 2001. V. 33. № 3. P. 285. https://doi.org/10.1006/rtph.2001.1476
- Gonzalez H., Tarras-Wahlberg N., Strömdahl B. et al. // BMC Dermatol. 2007. V. 7. № 1. P. 1. https://doi.org/10.1186/1471-5945-7-1
- Gabard B. Sunscreens // Cosmetics. Berlin: Springer, 1999. P. 116. https://doi.org/10.1007/978-3-642-59869-2_9
- Bryden A.M., Moseley H., Ibbotson S.H. et al. // Br. J. Dermatol. 2006. V. 155. № 4. P. 737. https://doi.org/10.1111/j.1365-2133.2006.07458.x
- Victor F.C., Cohen D.E., Soter N.A. // J. Am. Acad. Dermatol. 2010. V. 62. № 4. P. 605. https://doi.org/10.1016/j.jaad.2009.06.084
- Schneider S.L., Lim H.W. // Photodermatol. Photoimmunol. Photomed. 2019. V. 35. № 6. P. 442. https://doi.org/10.1111/phpp.12439
- Serpone N., Dondi D., Albini A. // Inorg. Chim. Acta. 2007. V. 360. № 3. P. 794. https://doi.org/10.1016/j.ica.2005.12.057
- Morsella M., D’Alessandro N., Lanterna A.E. et al. // ACS Omega. 2016. V. 1. № 3. P. 464. https://doi.org/10.1021/acsomega.6b00177
- Nakata K., Fujishima A. // J. Photochem. Photobiol., C: Photochem. Rev. 2012. V. 13. № 3. P. 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
- Horie M., Sugino S., Kato H. et al. // Toxicol. Mech. Methods. 2016. V. 26. № 4. P. 284. https://doi.org/10.1080/15376516.2016.1175530
- Sun S., Song P., Cui J. et al. // Catal. Sci. Technol. 2019. V. 9. № 16. P. 4198. https://doi.org/10.1039/C9CY01020C
- Jang E., Sridharan K., Park Y.M. et al. // Chem. A Eur. J. 2016. V. 22. № 34. P. 12022. https://doi.org/10.1002/chem.201600815
- Becker L.C., Boyer I., Bergfeld W.F. et al. // Int. J. Toxicol. 2016. V. 35. № 3. P. 16S. https://doi.org/10.1177/1091581816677948
- Cassin G., Diridollou S., Flament F. et al. // Int. J. Cosmet. Sci. 2018. V. 40. № 1. P. 58. https://doi.org/10.1111/ics.12433
- Yorov K.E., Kolesnik I.V., Romanova I.P. et al. // J. Supercrit. Fluids. 2021. V. 169. P. 105099. https://doi.org/10.1016/j.supflu.2020.105099
- Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
- Hüsing N., Schubert U. // Angew. Chem. Int. Ed. 1998. V. 37. № 1–2. P. 22. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
- Feinle A., Elsaesser M.S., Hüsing N. // Chem. Soc. Rev. 2016. V. 45. № 12. P. 3377. https://doi.org/10.1039/C5CS00710K
- Yorov K.E., Baranchikov A.E., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 2. P. 89. https://doi.org/10.1134/S1070328422020014
- Singh P., Nanda A. // Int. J. Cosmet. Sci. 2014. V. 36. № 3. P. 273. https://doi.org/10.1111/ics.12124
- Chen L., Zhu J., Liu Y.-M. et al. // J. Mol. Catal. A: Chem. 2006. V. 255. № 1–2. P. 260. https://doi.org/10.1016/j.molcata.2006.04.043
- Moussaoui R., Elghniji K., ben Mosbah M. et al. // J. Saudi Chem. Soc. 2017. V. 21. № 6. P. 751. https://doi.org/10.1016/j.jscs.2017.04.001
- Donėlienė J., Fataraitė-Urbonienė E., Danchova N. et al. // Gels. 2022. V. 8. № 7. P. 422. https://doi.org/10.3390/gels8070422
- Gaweł B., Gaweł K., Øye G. // Materials. 2010. V. 3. № 4. P. 2815. https://doi.org/10.3390/ma3042815
- Lermontov S.A., Straumal E.A., Mazilkin A.A. et al. // Mater. Lett. 2017. V. 215. P. 19. https://doi.org/10.1016/j.matlet.2017.12.031
- Yorov K.E., Sipyagina N.A., Malkova A.N. et al. // Inorg. Mater. 2016. V. 52. № 2. P. 163. https://doi.org/10.1134/S0020168516020035
- Yorov K.E., Sipyagina N.A., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 11. P. 1339. https://doi.org/10.1134/S0036023616110048
- Baranchikov A.E., Kopitsa G.P., Yorov K.E. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 874. https://doi.org/10.1134/S003602362106005X
- Livage J., Henry M., Sanchez C. // Prog. Solid State Chem. 1988. V. 18. № 4. P. 259. https://doi.org/10.1016/0079-6786(88)90005-2
- Gash A.E., Tillotson T.M., Satcher Jr J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
- Itoh H., Tabata T., Kokitsu M. et al. // J. Ceram. Soc. Jpn. 1993. V. 101. № 1177. P. 1081. https://doi.org/10.2109/jcersj.101.1081
- Wei T.-Y., Chen C.-H., Chang K.-H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
- Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
- Straumal E.A., Ivanov V.K., Malkova A.N. et al. // J. Sol-Gel Sci. Technol. 2017. V. 84. № 3. P. 377. https://doi.org/10.1007/s10971-017-4429-5
- Lermontov S.A., Yurkova L.L., Straumal E.A. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 303. https://doi.org/10.1134/S0036023618030142
- Yorov K.E., Yapryntsev A.D., Baranchikov A.E. et al. // J. Sol-Gel Sci. Technol. 2018. V. 86. № 2. P. 400. https://doi.org/10.1007/s10971-018-4647-5
- Kameneva S.V., Yorov K.E., Kamilov R.K. et al. // J. Sol-Gel Sci. Technol. 2023. V. 107. P. 586.https://doi.org/10.1007/s10971-023-06149-z
- Rouquerol J., Llewellyn P., Rouquerol F. // Stud. Surf. Sci. Catal. 2007. V. 160. P. 49. https://doi.org/10.1016/S0167-2991(07)80008-5
- Фиалков Ю.Я. Растворитель как средство управления химическим процессом. М., 1990.
- Kuzin E.N., Krutchinina N.E. // Inorg. Mater. 2019. V. 55. № 8. P. 834. https://doi.org/10.1134/S0020168519080065
- Wang T.-H., Navarrete-López A.M., Li S. et al. // J. Phys. Chem. A 2010. V. 114. № 28. P. 7561. https://doi.org/10.1021/jp102020h
- Archambault J., Rivest R. // Can. J. Chem. 1958. V. 36. № 11. P. 1461. https://doi.org/10.1139/v58-216
- Cottineau T., Richard-Plouet M., Rouet A. et al. // Chem. Mater. 2008. V. 20. № 4. P. 1421. https://doi.org/10.1021/cm702531q
- Emons H.-H., Janneck E., Pollmer K. // Z. Anorg. Allg. Chem. 1984. V. 511. № 4. P. 135. https://doi.org/10.1002/zaac.19845110415
- Suzuki H., Ishiguro S.-I. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. 54. № 5. P. 586. https://doi.org/10.1107/S0108270197018817
- Titanium(IV), Zirconium, Hafnium and Thorium // Hydrolys. Met. Ions. Weinheim: Wiley, 2016. P. 433. https://doi.org/10.1002/9783527656189.ch10
- Aluminium, Gallium, Indium and Thallium // Hydrolys. Met. Ions. Hydrolys. Met. Ions, Weinheim: Wiley, 2016. P. 757. https://doi.org/10.1002/9783527656189.ch13
- Gash A.E., Tillotson T.M., Satcher J.H. et al. // Chem. Mater. 2001. V. 13. № 3. P. 999. https://doi.org/10.1021/cm0007611
- Du X., Wang Y., Su X. et al. // Powder Technol. 2009. V. 192. № 1. P. 40. https://doi.org/10.1016/j.powtec.2008.11.008
- Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
- Gao M., Liu B., Zhao P. et al. // J. Sol-Gel Sci. Technol. 2019. V. 91. № 3. P. 514. https://doi.org/10.1007/s10971-019-05057-5
- Guinier A., Fournet G. Small-Angle X-Ray Scattering. N.Y.: John Wiley & Sons Inc., 1955. https://doi.org/10.1002/pol.1956.120199326
- Teixeira J. Experimental Methods for Studying Fractal Aggregates // Growth Form. Dordrecht: Springer, 1986. P. 145. https://doi.org/10.1007/978-94-009-5165-5_9
- Kim D., Jung J., Ihm J. // Nanomaterials. 2018. V. 8. № 6. P. 375. https://doi.org/10.3390/nano8060375
- Keysar S., De Hazan Y., Cohen Y. et al. // J. Mater. Res. 1997. V. 12. № 2. P. 430. https://doi.org/10.1557/JMR.1997.0063
- Meng F., Schlup J.R., Fan L.T. // Chem. Mater. 1997. V. 9. № 11. P. 2459. https://doi.org/10.1021/cm9700662
- Chane-Ching J.-Y., Klein L.C // J. Am. Ceram. Soc. 1988. V. 71. № 1. P. 86. https://doi.org/10.1111/j.1151-2916.1988.tb05765.x
- Catauro M., Tranquillo E., Dal Poggetto G. et al. // Materials. 2018. V. 11. № 12. https://doi.org/10.3390/ma11122364
- Diko M. // Acta Geodyn. Geomater. 2015. P. 149. https://doi.org/10.13168/AGG.2015.0052
- Feng G., Jiang F., Jiang W. et al. // Ceram. Int. 2019. V. 45. № 15. P. 18704. https://doi.org/10.1016/j.ceramint.2019.06.096
- Kirillova S.A., Almjashev V.I., Gusarov V. V. // Russ. J. Inorg. Chem. 2011. V. 56. № 9. P. 1464. https://doi.org/10.1134/S0036023611090117
- Dransfield G.P. // Radiat. Prot. Dosimetry. 2000. V. 91. № 1. P. 271. https://doi.org/10.1093/oxfordjournals.rpd.a033216
- Kim M.G., Kang J.M., Lee J.E. et al. // ACS Omega. 2021. V. 6. № 16. P. 10668. https://doi.org/10.1021/acsomega.1c00043
- Nishizawa H., Aoki Y. // J. Solid State Chem. 1985. V. 56. № 2. P. 158. https://doi.org/10.1016/0022-4596(85)90052-0
- Bachina A.K., Almjasheva O.V., Popkov V.I. et al. // J. Cryst. Growth 2021. V. 576. P. 126371. https://doi.org/10.1016/j.jcrysgro.2021.126371
- Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosyst. Physics, Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437
- Lin H., Li L., Zhao M. et al. // J. Am. Chem. Soc. 2012. V. 134. № 20. P. 8328. https://doi.org/10.1021/ja3014049
- Hammouda B. // J. Appl. Crystallogr. 2010. V. 43. № 4. P. 716. https://doi.org/10.1107/S0021889810015773
- Schmidt P.W., Avnir D., Levy D. et al. // J. Chem. Phys. 1991. V. 94. № 2. P. 1474. https://doi.org/10.1063/1.460006
- Pogorelov V., Doroshenko I., Pitsevich G. et al. // J. Mol. Liq. 2017. V. 235. P. 7. https://doi.org/10.1016/j.molliq.2016.12.037
- Roscoe J.M., Abbatt J.P.D. // J. Phys. Chem. A. 2005. V. 109. № 40. P. 9028. https://doi.org/10.1021/jp050766r
- Thomas K., Hoggan P.E., Mariey L. et al. // Catal. Lett. 1997. V. 46. № 1/2. P. 77. https://doi.org/10.1023/A:1019017123596
- Hanaor D.A.H., Sorrell C.C. // J. Mater. Sci. 2011. V. 46. № 4. P. 855. https://doi.org/10.1007/s10853-010-5113-0
- Akkaya Arier U.O., Tepehan F.Z. // Compos. Part B Eng. 2014. V. 58. P. 147. https://doi.org/10.1016/j.compositesb.2013.10.023
- Hanini F., Bouabellou A., Bouachiba Y. et al. // IOSR J. Eng. 2013. V. 3. № 11. P. 21. https://doi.org/10.9790/3021-031112128
- Riaz S., Sajid-ur-Rehman, Abutalib M. et al. // J. Electron. Mater. 2016. V. 45. № 10. P. 5185. https://doi.org/10.1007/s11664-016-4754-4
- Filatova E.O., Konashuk A.S. // J. Phys. Chem. C. 2015. V. 119. № 35. P. 20755. https://doi.org/10.1021/acs.jpcc.5b06843
- Prange M.P., Zhang X., Ilton E.S. et al. // J. Chem. Phys. 2018. V. 149. № 2. P. 024502. https://doi.org/10.1063/1.5037104
- Tzompantzi F., Piña Y., Mantilla A. et al. // Catal. Today. 2014. V. 220–222. P. 49. https://doi.org/10.1016/j.cattod.2013.10.027
- Carp O., Huisman C.L., Reller A. // Prog. Solid State Chem. 2004. V. 32. № 1–2. P. 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
Arquivos suplementares
