Alkaline Metal Fluoroxalatouranylates: Structure and Some Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Crystal structure Na3[UO2(C2O4)F3] · 4H2O (I), K3[UO2(C2O4)F3] (II), K3[UO2(C2O4)2F] · 3H2O (III) and Cs[UO2(C2O4)F] · H2O (IV) first studied by X-ray diffraction. Uranium–containing structural units are complexes [UO2(C2O4)F3]3ˉ (for I and II), [UO2(C2O4)2F]3- (III) and [UO2(C2O4)F]- (IV), accordingly with crystal chemical formulas А(В01)M13, А(В01)2M1 and А(Q02)M1, where A = UO22+, B01 or Q02 = C2O42-, and M1 = F- . In all compounds U(VI) atoms implement pentagonal-bipyramidal coordination, at that in IIII uranyl complexes have single–core structure, and in IV crystals–chain structure which is similar for the well — known for [UO2(C2O4)(H2O)] · 2H2O. The obtained results suggest that a sharp increase in the solubility of uranyl oxalate trihydrate in aqueous solutions with the addition of fluorides is due to the well-known effect of structural depolymerization of coordination polymers of d- or f-metals in the presence of fluoride ions. Semi-empirical calculation and comparison of calculated and experimental oscillation frequencies in IR spectra II and IV are carried out.

Texto integral

Acesso é fechado

Sobre autores

V. Serezhkin

Samara National Research University

Autor responsável pela correspondência
Email: serezhkin@samsu.ru
Rússia, Samara, 443011

М. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: serezhkin@samsu.ru
Rússia, Moscow, 119071

М. Sukacheva

Samara National Research University

Email: serezhkin@samsu.ru
Rússia, Samara, 443011

V. Losev

Samara National Research University

Email: serezhkin@samsu.ru
Rússia, Samara, 443011

L. Serezhkina

Samara National Research University

Email: serezhkin@samsu.ru
Rússia, Samara, 443011

Bibliografia

  1. Chernyaev I.I. Complex Compounds of Uranium. New York: Daniel Devy and Co. Inc., 1966.
  2. Щелоков Р.Н. // Химия платиновых и тяжелых металлов / Под ред. Щелокова Р.Н. М.: Наука, 1975. С. 110.
  3. Михайлов Ю.Н. // Химия платиновых и тяжелых металлов / Под ред. Щелокова Р.Н. М.: Наука, 1975. С. 127.
  4. Давидович Р.Л. // Вестник ДВО РАН. 2022. № 6. C. 5.
  5. Inorganic crystal structure database. Gmelin-institut fur Anoranische Chemie & FIC Karlsruhe, 2022.
  6. Cambridge structural database system. Cambridge Crystallographic Data Centre, 2022.
  7. Serezhkin V.N., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2022. V. 64. № 4. P. 491.
  8. Zachariasen W.H. // Acta Crystallogr. 1948. V. 1. P. 277.
  9. Kim J.-Y., Norquist A.J., O‘Hare D. // Dalton Trans. 2003. P. 2813. https://doi.org/10.1039/B30673
  10. Deifel N.P., Holman K.T., Cahill C.L. // Chem. Commun. 2008. P. 6037.
  11. Nguyen Quy Dao, Bkouche-Waksman I., Walewski M., Caceres D. // Bull. Soc. Chim. Fr. 1984. P. 129.
  12. Матюха В.А., Матюха С.В. Оксалаты редкоземельных элементов и актиноидов. М.: Энергоатомиздат, 2004. 408 с.
  13. Черняев И.И., Головня В.А., Щелоков Р.Н. // Журн. неорган. химии. 1961. Т. 6. С. 557.
  14. SAINT-Plus (Version 7.68). Bruker AXS Inc., Madison, Wisconsin, USA. 2007.
  15. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. Part 1. P. 3.
  16. TWINABS (Version 2012/1). Madison: Bruker AXS Inc., 2012.
  17. Sheldrick G.M. // Acta Crystallogr. 2008. V. 64A. № 1. P. 112. https://doi.org/
  18. Sheldrick G.M. // Acta Crystallogr. 2015. V. 71C. № 1. P. 3. https://doi.org/10.1107/ S2053229614024218
  19. Cережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // Журн. неорган. химии. 1997. Т. 42. № 12. С. 2036.
  20. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr. 2009. V. 65B. Part 1. P. 45. https://doi.org/10.1107/S0108768108038846
  21. Serezhkin V.N., Verevkin A.G., Smirnov O.P., Plakhtii V.P. // Russ. J. Inorg. Chem. 2010. V. 55. № 10. Р. 1600.
  22. Serezhkin V.N., Neklyudova N.A., Smirnov O.P. // Russ. J. Inorg. Chem. 2012. V. 57. № 6. Р. 864.
  23. Jayadevan N.C., Chackraburtty D.M. // Acta Crystallogr. 1972. V. 28 B. P. 3178.
  24. Михайлов Ю.Н., Горбунова Ю.E., Шишкина O.В. и др. // Журн. неорган. химии. 1999. Т. 44. № 9. С. 1448.
  25. Giesting O.A., Porter N.J., Burns P.C. // Z. Kristallogr. 2006. V. 221. № 4. P. 252.
  26. Артемьева М.Ю., Сережкин В.Н., Смирнов O.Н., Плахтий В.П. // Журн. неорган. химии. 2006. Т. 51. № 8. С. 1392.
  27. Давидович Р.Л. // Коорд. химия. 1986. Т. 12. № 2. С. 281.
  28. Давидович Р.Л. // Вестник ДВО РАН. 2022. № 2. С. 49. https://doi.org/10.37102/0869-7698_2022_222_02_4
  29. Сережкина Л.Б., Сережкин В.Н., Пушкин Д.В., Лосев В.Ю. Колебательная спектроскопия неорганических соединений. Самара: Самарский университет, 2009. 132 с.
  30. Грибов Л.А., Дементьев В.А. Методы и алгоритмы вычислений в теории колебательных спектров молекул. М.: Наука, 1981. 356 с.
  31. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New Jersey: John Wiley & Sons. Inc., 2009. Part B. 419 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The structure of single–core complexes [UO2(C2O4)F3]3– in structures I or II (a) and [UO2(C2O4)2F]3- in structure III (b).

Baixar (57KB)
3. Fig. 2. Fragment of the chain [UO2(C2O4)F]– in structure IV.

Baixar (75KB)
4. Fig. 3. The structure of the six-core Na6F6O12(H2O)8 grouping in structure I.

Baixar (74KB)
5. Fig. 4. Theoretical (1) and experimental (2) IR spectra of K[UO2(C2O4)F] (II). The red segments correspond to the calculated frequencies and intensities of vibrations.

Baixar (246KB)
6. Fig. 5. Theoretical (1) and experimental (2) IR spectra of Cs[UO2(C2O4)F] · H2O (IV). The red segments correspond to the calculated frequencies and intensities of vibrations.

Baixar (183KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024