Copper(II) complexes with mono- and doubly reduced forms of 3,5-di-tert-octyl-o-benzoquinone

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Copper(II) complexes on the basis of 3,5-di-tert-octyl-o-benzoquinone (3,5-tOc-Q) have been synthesised. Derivatives of the composition: (3,5-tOc-SQ)2Cu (I), (3,5-tOc-Cat)Cu(Phen) (II), (3,5-tOc-Cat)Cu(DPQ) (III) and (3,5-tOc-Cat)Cu(DPPZ) (IV), where 3,5-tOc-SQ is the anion radical of 3,5-di-tert-octyl-o-benzoquinone, 3,5-tOc-Cat is the dianion of 3,5-di-tert-octyl-o-benzoquinone, Phen is phenanthroline, DPQ is dipyrido[3,2-d: 2′,3′-f]quinoxaline, DPPZ — dipyrido[3,2-a:2′,3′-c]phenazine. The molecular and crystal structures of complexes I and II were established by X-ray diffraction. The spectral characteristics of the synthesised copper(II) derivatives have been investigated by electronic absorption spectroscopy. Crystallographic data for compounds I and II have been deposited in the Cambridge Structural Data Bank (No. 2291614 for I and No. 2279045 for II).

Texto integral

Acesso é fechado

Sobre autores

O. Trofimova

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

A. Maleeva

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

M. Arseniev

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

T. Kocherova

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

A. Cherkasov

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

I. Yakushev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Moscow, 119991

P. Dorovatovski

National Research Center “Kurchatov Institute”

Email: olesya@iomc.ras.ru
Rússia, Moscow, 123182

A. Piskunov

Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: olesya@iomc.ras.ru
Rússia, Nizhny Novgorod, 603950

Bibliografia

  1. Nakada A., Matsumoto T., Chang H.-C. // Coord. Chem. Rev. 2022. V. 473. P. 214804. https://doi.org/10.1016/j.ccr.2022.214804
  2. Chaudhuri P., Verani C.N., Bill E. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 2213. https://doi.org/10.1021/ja003831d
  3. Mukherjee R. // Inorg. Chem. 2020. V. 59. P. 12961. https://doi.org/10.1021/acs.inorgchem.0c00240
  4. Sproules S., Wieghardt K. // Coord. Chem. Rev. 2010. V. 254. P. 1358. https://doi.org/10.1016/j.ccr.2009.12.012
  5. Eisenberg R. // Coord. Chem. Rev. 2011. V. 255. P. 825. https://doi.org/10.1016/j.ccr.2010.09.003
  6. Eisenberg R., Gray H.B. // Inorg. Chem. 2011. V. 50. P. 9741. https://doi.org/10.1021/ic2011748
  7. Kusamoto T., Nishihara H. // Coord. Chem. Rev. 2019. V. 380. P. 419. https://doi.org/10.1016/j.ccr.2018.09.012
  8. Kaim W., Schwederski B. // Coord. Chem. Rev. 2010. V. 254. P. 1580. https://doi.org/10.1016/j.ccr.2010.01.009
  9. Kharisov B.I., Méndez-Rojas M.A., Garnovskii A.D. et al. // J. Coord. Chem. 2002. V. 55. P. 745. http://dx.doi.org/10.1080/0095897022000001511
  10. Baryshnikova S.V., Poddel’sky A.I. // Molecules. 2022. V. 27. P. 3928.
  11. Monni N., Angotzi M.S., Oggianu M. et al. // J. Mater. Chem. C. 2022. V. 10. P. 1548. https://doi.org/10.1039/d1tc05335c
  12. Pierpont C.G. // Coord. Chem. Rev. 2001. V. 216–217. P. 99. https://doi.org/10.1016/S0010-8545(01)00309-5
  13. Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
  14. Барышникова С.В., Беллан Е.В., Поддельский А.И. и др. // Докл. АН. 2017. Т. 474. № 1. С. 46. https://doi.org/10.7868/S0869565217130102
  15. Piskunov A.V., Maleeva A.V., Bogomyakov A.S. et al. // Polyhedron. 2015. V. 102. P. 715. https://doi.org/10.1016/j.poly.2015.10.045
  16. Piskunov A.V., Maleeva A.V., Fukin G.K. et al. // Inorg. Chim. Acta. 2017. V. 455. P. 213. https://doi.org/10.1016/j.ica.2016.10.030
  17. Bellan E.V., Poddel’sky A.I., Protasenko N.A. et al. // Inorg. Chem. Commun. 2014. V. 50. P. 1. https://doi.org/10.1016/j.inoche.2014.10.001
  18. Pierpont C.G. // Coord. Chem. Rev. 2001. V. 219–221. P. 415. https://doi.org/10.1016/S0010-8545(01)00342-3
  19. Bellan E.V., Poddel’sky A.I., Protasenko N.A. et al. // ChemistrySelect. 2016. V. 1. P. 2988. https://doi.org/10.1002/slct.201600506
  20. Protasenko N.A., Poddel’sky A.I. // Theor. Exp. Chem. 2020. V. 56. P. 338. https://doi.org/10.1007/s11237-020-09663-1
  21. Pierpont C.G., Buchanan R.M. // Coord. Chem. Rev. 1981. V. 38. P. 45. https://doi.org/10.1016/S0010-8545(00)80499-3
  22. Tezgerevska T., Alley K.G., Boskovic C. // Coord. Chem. Rev. 2014. V. 268. P. 23. https://doi.org/10.1016/j.ccr.2014.01.014
  23. Малеева А.В., Трофимова О.Ю., Якушев И.А. и др. // Коорд. химия. 2023. Т. 49. № 7. C. 412. https://doi.org/10.31857/S0132344X2260059X
  24. Ершова И.В., Малеева А.В., Айсин Р.Р. и др. // Изв. АН. Сер. хим. 2023. Т. 72. № 1. С. 193.
  25. Pashanova K.I., Ershova I.V., Trofimova O.Y. et al. // Molecules. 2022. V. 27. P. 8175. https://doi.org/10.3390/molecules27238175
  26. Maleeva A.V., Ershova I.V., Trofimova O.Y. et al. // Mendeleev Commun. 2022. V. 32. P. 83. https://doi.org/10.1016/j.mencom.2022.01.027
  27. Kirk M.L., Shultz D.A., Marri A.R. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21005. https://doi.org/10.1021/jacs.2c09680
  28. Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. P. 4622. https://doi.org/10.3390/molecules26154622
  29. Kirk M.L., Shultz D.A., Hewitt P. et al. // Chemical Science. 2021. V. 12. P. 13704. https://doi.org/10.1039/D1SC02965G
  30. Kirk M.L., Shultz D.A., Chen J. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 10519. https://doi.org/10.1021/jacs.1c04149
  31. Черкасова А.В., Кожанов К.А., Золотухин А.А. и др. // Коорд. химия. 2019. Т. 45. № 7. С. 404. https://doi.org10.1134/S0132344X19070028
  32. Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. P. 1314. https://doi.org/10.1002/chem.201903700
  33. Chiang L., Herasymchuk K., Thomas F. et al. // Inorg. Chem. 2015. V. 54. P. 5970. https://doi.org/10.1021/acs.inorgchem.5b00783
  34. Kurahashi T., Fujii H. // J. Am. Chem. Soc. 2011. V. 133. P. 8307. https://doi.org/10.1021/ja2016813
  35. Linfoot C.L., Richardson P., McCall K.L. et al. // Solar Energy. 2011. V. 85. P. 1195. https://doi.org/10.1016/j.solener.2011.02.023
  36. Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
  37. Neuthe K., Popeney C.S., Bialecka K. et al. // Polyhedron. 2014. V. 81. P. 583. https://doi.org/10.1016/j.poly.2014.07.015
  38. Cameron L.A., Ziller J.W., Heyduk A.F. // Chemical Science. 2016. V. 7. P. 1807. https://doi.org/10.1039/C5SC02703A
  39. Deibel N., Schweinfurth D., Fiedler J. et al. // Dalton Trans. 2011. V. 40. P. 9925. https://doi.org/10.1039/C1DT10856E
  40. Tahara K., Ashihara Y., Higashino T. et al. // Dalton Trans. 2019. V. 48. P. 7367. https://doi.org/10.1039/C8DT05057K
  41. Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
  42. Deibel N., Schweinfurth D., Hohloch S. et al. // Chem. Commun. 2012. V. 48. P. 2388. https://doi.org/10.1039/C2CC15245B
  43. Yang J., Kersi D.K., Richers C.P. et al. // Inorg. Chem. 2018. V. 57. P. 13470. https://doi.org/10.1021/acs.inorgchem.8b02087
  44. Shultz D.A., Stephenson R., Kirk M.L. // Dalton Trans. 2023. V. 52. P. 1970. https://doi.org/10.1039/D2DT03385B
  45. Scattergood P.A., Jesus P., Adams H. et al. // Dalton Trans. 2015. V. 44. P. 11705. https://doi.org/10.1039/C4DT03466J
  46. Бубнов М.П., Пискунов А.В., Золотухин А.А. и др. // Коорд. химия. 2020. Т. 46. С. 204. https://doi.org/10.31857/S0132344X20030019
  47. Кочерова Т.Н., Дружков Н.О., Арсеньев М.В. и др. // Изв. АН. Сер. хим. 2023. Т. 72. С. 1192.
  48. Кочерова Т.Н., Дружков Н.О., Мартьянов К.А. и др. // Изв. АН. Сер. хим. 2020. Т. 69. С. 2383.
  49. Кочерова Т.Н., Дружков Н.О., Шавырин А.С. и др. // Изв. АН. Сер. хим. 2021. Т. 70. С. 916.
  50. Малеева А.В., Трофимова О.Ю., Кочерова Т.Н. и др. // Коорд. химия. 2023. Т. 49. № 11. С. 693. https://doi.org/10.31857/S0132344X23600315
  51. Климашевская А.В., Арсеньева К.В., Черкасов А.В. и др. // Журн. структур. химии. 2023. Т. 64. № 12. С. 118910. https://doi.org/10.26902/JSC_id118910
  52. Барышникова С.В., Арсеньев М.В., Дружков Н.О. и др. // Коорд. химия. 2023. Т. 49. № 12. (в печати)
  53. Van der Tol E.B., Van Ramesdonk H.J., Verhoeven J.W. et al. // Chem. Eur. J. 1998. V. 4. P. 2315.
  54. Rigaku Oxford Diffraction C.s.s., ver. 1.171.41.39a. Rigaku Corporation, Wroclaw, Poland. 2020.
  55. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  56. Sheldrick G.M. // Acta Crystallogr. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
  57. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  58. Kabsch W. // Acta Crystallogr., Sect. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  59. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  60. Ovcharenko V.I., Gorelik E.V., Fokin S.V. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 10512. https://doi.org/10.1021/ja072463b
  61. Veber S.L., Fedin M.V., Fokin S.V. et al. // Appl. Magn. Reson. 2010. V. 37. P. 693. https://doi.org/10.1007/s00723-009-0087-2
  62. Thompson J.S., Calabrese J.C. // J. Am. Chem. Soc. 1986. V. 108. P. 1903. https://doi.org/10.1021/ja00268a031
  63. Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251. https://doi.org/10.1021/ic202764j
  64. Hathaway B.J., Billing D.E. // Coord. Chem. Rev. 1970. V. 5. P. 143. https://doi.org/10.1016/S0010-8545(00)80135-6
  65. Piskunov A.V., Maleeva A.V., Mescheryakova I.N. et al. // Eur. J. Inorg. Chem. 2012. P. 4318. https://doi.org/10.1002/ejic.201200535
  66. Chegerev M.G., Piskunov A.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. V. 2016. P. 3813. https://doi.org/10.1002/ejic.201600501
  67. Davidson R.A., Hao J., Rheingold A.L. et al. // Polyhedron. 2017. V. 136. P. 176. https://doi.org/10.1016/j.poly.2017.10.003
  68. Жеребцов М.А., Арсеньев М.В., Баранов Е.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. С. 117710. https://doi.org/10.26902/JSC_id117710
  69. Verma P., Weir J., Mirica L. et al. // Inorg. Chem. 2011. V. 50. P. 9816. https://doi.org/10.1021/ic200958g
  70. Бацанов С.С. // Журн. неорган. химии. 1991. Т. 36. С. 3015.
  71. Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154. https://doi.org/10.31857/S0044457X23600846
  72. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991. 764 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The molecular structure of complex I. Thermal ellipsoids are given with a 50% probability. Hydrogen atoms are not shown.

Baixar (65KB)
3. Fig. 2. The molecular structure of complex II. Thermal ellipsoids are given with a 50% probability. Hydrogen atoms are not shown.

Baixar (115KB)
4. Fig. 3. Intermolecular contacts in II.

Baixar (104KB)
5. Fig. 4. Electronic absorption spectra of solutions of complexes I, II, IV (C = 6.3 × 10-4 mol/l) and III (C = 6.4 × 10-4 mol/l).

Baixar (100KB)
6. Scheme 1.

Baixar (61KB)
7. Scheme 2.

Baixar (134KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024