Synthesis and alloying of zinc sulfide in a homogeneous system based on dodecane, its identification and optical properties
- Autores: Zarudskikh M.A.1, Ilina E.G.1, Mankevich A.S.2, Smagin V.P.1
-
Afiliações:
- Altai State University
- ZAO “SuperOx”
- Edição: Volume 69, Nº 2 (2024)
- Páginas: 166-176
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/665917
- DOI: https://doi.org/10.31857/S0044457X24020038
- EDN: https://elibrary.ru/ZIHAFN
- ID: 665917
Citar
Resumo
Zinc sulfide doped with Mn2+ ions was synthesized in a homogeneous dodecane medium by the method of emerging reagents. By methods of chemical and X-ray phase analysis, IR spectroscopy, electron microprobe microscopy, identification of products was carried out, photographs of the surface of powder particles (SEM) were recorded. Based on the totality of the results, a conclusion is made about the formation of nanoscale objects having a polytype structure with a predominance of distorted cubic crystals forming agglomerates up to 10 microns in size in ZnS powder and up to 100 microns in ZnS–Mn powder. The formation of nanoscale ZnS particles is confirmed by spectral data. The effect of manganese ions on the photoluminescence (FL) of the powder is manifested by a change in the type of the descending branch of the ZnS–Mn FL band, it is associated with recombination processes at the levels of defects formed by Mn2+ ions in the ZnS structure at their low concentration.
Palavras-chave
Texto integral

Sobre autores
M. Zarudskikh
Altai State University
Email: smaginV@yandex.ru
Rússia, 656049 Barnaul, Lenin Ave., 61
E. Ilina
Altai State University
Email: smaginV@yandex.ru
Rússia, 656049 Barnaul, Lenin Ave., 61
A. Mankevich
ZAO “SuperOx”
Email: smaginV@yandex.ru
Rússia, 117246 Moscow, Scientific Ave., 20
V. Smagin
Altai State University
Autor responsável pela correspondência
Email: smaginV@yandex.ru
Rússia, 656049 Barnaul, Lenin Ave., 61
Bibliografia
- Хайрутдинов Р.Ф. // Успехи химии. 1998. Т. 67. № 2. С. 125.
- Сергеева Н.М., Богданов С.П., Омаров Ш.О. // Изв. СПбГТИ (ТУ). 2018. № 46 (72). С. 56.
- Ремпель А.А. // Успехи химии. 2007. Т. 76. № 5. Р. 474. https://doi.org/10.1070/RC2007v076n05ABEH003674.
- Lu W., Guo X., Luo Y. et al. // Chem. Eng. J. 2019. № 355. Р. 208. https://doi.org/10.1016/j.cej.2018.08.132
- Ramya E., Rao M.V., Rao D.N. // Physica E. 2019. V. 107. P. 24. https://doi.org/10.1016/j.physe.2018.11.010
- Садовников С.И., Ищенко А.В., Ванштейн И.А. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1183. https://doi.org/10.31857/S0044457X20090147
- Kumar S., Bhushan R., Kumar S.R., Rajpal S. // Chalcogenide Lett. 2022. V. 19. № 1. P. 1. https://doi.org/10.15251/CL.2022.191.1
- Садовников С.И. // Успехи химии. 2019. Т. 88. № 6. С. 571. http://dx.doi.org/10.1070/RCR4867?locatt= label:RUSSIAN
- Shakil M.A., Das S., Rahman M.A. et al. // Mater. Sci. Appl. 2018. V. 9. P. 751. http://www.scirp.org/journal/msa
- Hurma T. // J. Mol. Struct. 2018. V. 1161. P. 279. https://doi.org/10.1016/j.molstruc.2018.02.070
- Маскаева Л.Н., Кутявина А.Д., Марков В.Ф. и др. // Журн. общ. химии. 2018. Т. 88. № 2. С. 319.
- Селянина А.Д., Маскаева Л.Н., Воронин В.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 26. https://doi.org/10.31857/S0044457X22601213
- Маскаева Л.Н., Марков В.Ф., Воронин В.И. и др. // Неорган. материалы. 2023. Т. 59. № 4. С. 363. https://doi.org/10.31857/S0002337X23040061
- Казанкин О.Н., Марковский Л.Я., Миронов И.А. и др. Неорганические люминофоры. Л.: Химия, 1975. С. 192.
- Bhargava R.N., Gallagher D., Hong X., Nurmikko A. // Phys. Rev. Lett. 1994. V. 72. № 3. P. 416.
- Корсаков В.Г., Сычев М.М., Бахметьев В.В. // Конденсированные среды и межфазные границы. 2012. Т. 14. № 1. С. 41.
- Огурцов К.А., Сычев М.М., Бахметьев В.В. и др. // Неорган. материалы. 2016. Т. 52. № 11. С. 1188.
- Othman A.A., Osman M.A., Ali M.A. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 1752. https://doi.org/10.1007/s10854-019-02693-z
- Vineeshkumar T.V., Rithesh Raj D., Prasanth S. et al. // Opt. Mater. 2014. № 37. Р. 439. https://doi.org/10.1016/j.optmat.2014.06.037.
- Saluja J.K., Parganiha Y., Tiwari N. et al. // Optik. 2016. № 127. Р. 7958. https://doi.org/10.1016/j.ijleo.2016.05.011.
- Галяметдинов Ю.Г., Сагдеев Д.О., Воронкова В.К. и др. // Изв. АН. Сер. хим. 2018. Т. 67. № 1. С. 172.
- Сагдеев Д.О. Автореф. … канд. хим. наук. Казань, 2019. 20 с.
- Patel N.H., Deshpande M.P., Chaki S.H., Keharia H.R. // J. Mater. Sci. — Mater. Electron. 2017. V. 28. № 15. P. 10866. https://link.springer.com/article/10.1007/s10854-017-6865-y
- Буланый М.Ф., Коваленко А.В., Полежаев Б.А., Прокофьев Т.А. // Физика и техника полупроводников. 2009. Т. 43. № 6. С. 745.
- Литвин Б.Н., Пополитов В.И. Гидротермальный синтез неорганических соединений. М.: Наука, 1984. 185 с.
- Denzler D., Olschewski M., Sattler K. // J. Appl. Phys. 1998. V. 84. № 5. P. 2841.
- Kunstman P., Coulon J., Kolmykov O. et al. // J. Lumin. 2018. V. 194. P. 760. https://doi.org/10.1016/j.jlumin.2017.09.047
- Зарубанов А.А., Журавлев К.С. // Физика и техника полупроводников. 2015. Т. 49. № 3. С. 392.
- Смагин В.П., Давыдов Д.А., Унжакова Н.М., Бирюков А.А. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1734.
- Исаева А.А., Смагин В.П. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1020. https://doi.org/10.1134/S0044457X19100064
- Затонская Л.В., Смагин В.П., Харнутова Е.П., Игнатов Е.В. // Физика и техника полупроводников. 2022. Т. 56. № 6. С. 570. https://doi.org/10.21883/FTP.2022.06.52591.9820
- Перов Э.И., Ирхина Е.П. // Неорган. материалы. 1997. Т. 33. № 7. С. 120.
- Перов Э.И., Ирхина Е.П., Ильина Е.Г. и др. Способ получения сульфида металла. Пат. РФ 2112743.
- Ирхина Е.П. Автореф. … канд. хим. наук. Барнаул, 2000. 19 с.
- Мощенская Н.В., Дерябина И.В., Перов Э.И. // Изв. АлтГУ. 2000. № 3 (17). С. 19.
- Харнутова Е.П., Перов Э.И. // Изв. АлтГУ. 2010. № 3–2 (67). С. 186.
- Ильина Е.Г., Смагин В.П., Затонская Л.В., Харнутова Е.П. // Ползуновский вестник. 2020. № 2. С. 107. https://doi.org/10.25712/ASTU.2072-8921.2020.02.020
- Ильина Е.Г., Санталова Н.А., Дунаева К.М. // Журн. неорган. химии. 1991. Т. 36. № 9. C. 1297.
- Гордон А., Форд Р. Спутник химии. М.: Мир, 1976. С. 441.
- Живописцев В.П., Селезнёва Е.А. Аналитическая химия цинка. М.: Наука, 1975. С. 51.
- Лаврухина К.А., Юкина Л.В. Аналитическая химия марганца. М.: Наука, 1974. С. 25.
- Kharkov A.M., Sitnikov M.N., Begisheva O.B. et al. IOP Conf. Series: Materials Science and Engineering. 2021. Р. 1118.
- Караксина Э.В. Автореф. … докт. хим. наук. Нижний Новгород, 2004. 40 с.
- Фадеева В.И., Шеховцова Г.Н., Иванов В.И. и др. Основы аналитической химии. М.: Высш. шк., 2001. 463 с.
- Кравцова А.Н., Будник А.П., Цатурян А.А. и др. // Журн. структур. химии. 2017. Т. 58. № 7. С. 1435. https://doi.org/10.26902/JSC20170717
- Садовников С.И., Попов И.Д. // Физика твердого тела. 2020. Т. 62. № 11. С. 1787. https://doi.org/10.21883/FTT.2020.11.50106.107
- Liao W-H., Hu Q-Q., Cheng M. et al. // RSC Advances. 2021. V. 11. P. 33344. https://doi.org/10.1039/d1ra06427d
- Кучакова Т.А., Весна Г.В., Макар В.А. // Физика и техника полупроводников. 2004. Т. 38. № 11. С. 1316. https://journals.ioffe.ru/articles/viewPDF/5654
- Бачериков Ю.Ю., Ворона И.П., Оптасюк С.В. и др. // Физика и техника полупроводников. 2004. Т. 38. № 9. С. 1025. https://doi.org/10.1134/1.1797471
- Морозова Н.К., Каретников И.А., Мидерос Д.А. и др. // Физика и техника полупроводников. 2006. Т. 40. № 10. С. 1185. https://doi.org/10.1134/S106378260610006X].
Arquivos suplementares
