Preparation of strontium hexaferrite based materials by solution combustion: the effect of charges arising in precursors and an external magnetic field

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of electric charges during the synthesis of complex oxide materials based on strontium hexaferrite SrFe12O19, including doped with lanthanum and cobalt ions, via the combustion of nitrate-organic precursors has been established. Precursors included polyvinyl alcohol or glycine as organic component. The intensity of charge generation was lower for precursors containing a larger amount of organic component. Data on the magnetic characteristics of the samples were obtained: magnetization, coercive force. The influence of an external magnetic field during the synthesis of hexaferrites significantly affected the coercive force of the samples and allowed to increase its values due to the formation of extended ensembles of nanoparticles. At the same time, such an effect on samples with a relatively low level of charge generation during precursor combustion was more effective. The relationship between the factors influencing the formation of extended aggregates is analyzed. The Sr0.8La0.2Fe11.8Co0.2O19 samples had the maximum coercive force. One of the techniques for increasing the coercive force is a two-stage thermomagnetic treatment, including a low-temperature stage. The formation of branched extended structures at the macro- and micro-levels was found during the combustion of glycine-containing precursors.

全文:

受限制的访问

作者简介

A. Ostroushko

Ural Federal University

编辑信件的主要联系方式.
Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

I. Gagarin

Ural Federal University

Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

E. Kudyukov

Ural Federal University

Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

T. Zhulanova

Ural Federal University

Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

A. Permyakova

Ural Federal University

Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

O. Russkikh

Ural Federal University

Email: alexander.ostroushko@urfu.ru
俄罗斯联邦, Yekaterinburg, 620002

参考

  1. Luo H., Rai B.K., Mishra S.R. et al. // J. Magn. Magn. Mater. 2012. V. 324. № 17. P. 2602. https://doi.org/10.1016/j.jmmm.2012.02.106
  2. Korsakova A.S., Kotsikau D.A., Haiduk Y.S. et al. // Condens. Matter Interph. 2020. V. 22. № 4. P. 466. https://doi.org/10.17308/kcmf.2020.22/3076
  3. Zhernovoy A.I., Diachenko S.V. // Nauch. Priborost. 2016. V. 26. № 1. P. 54. https://doi.org/10.18358/np-26-1-i5457
  4. Liu S. // Mod. Phys. Lett. B. 2020. V. 34. № 3. P. 2050043. https://doi.org/10.1142/S0217984920500438
  5. Berezhnaya M.V., Al’myasheva O.V., Mittova V.O. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 4. P. 626. https://doi.org/10.1134/S1070363218040035
  6. Wang J., Zhu Y., Chen Q. // Int. J. Mod. Phys. B. 2005. V. 19. № 12. P. 2053. https://doi.org/10.1142/S0217979205029626
  7. Zhernovoi A.I., Komlev A.A., D’yachenko S.V. // Tech. Phys. 2016. V. 61. № 2. P. 302. https://doi.org/10.1134/S1063784216020274
  8. Thomas N., Shimna T., Jithin P.V. et al. // J. Magn. Magn. Mater. 2018. V. 462. P. 136. https://doi.org/10.1016/j.jmmm.2018.05.010
  9. Naderi P., Masoudpanah S.M., Alamolhoda S. // Appl. Phys. A. 2017. V. 123. № 11. P. 702. https://doi.org/10.1007/s00339-017-1304-8
  10. Aravind G., Raghasudha M., Ravinder D. et al. // J. Magn. Magn. Mater. 2016. V. 406. P. 110. https://doi.org/10.1016/j.jmmm.2015.12.087
  11. Kombaiah K., Vijaya J.J., Kennedy L.J. et al. // Mater. Chem. Phys. 2019. V. 221. P. 11. https://doi.org/10.1016/j.matchemphys.2018.09.012
  12. Nforna E.A., Tsobnang P.K., Fomekong R.L. et al. // R. Soc. Open Sci. 2021. V. 8. № 2. P. 201883. https://doi.org/10.1098/rsos.201883
  13. Martinson K.D., Belyak V.E., Sakhno D.D. et al. // J. Alloys Compd. 2022. V. 894. P. 162554. https://doi.org/10.1016/j.jallcom.2021.162554
  14. Martinson K.D., Kondrashkova I.S., Chebanenko M.I. et al. // J. Rare Earths. 2022. V. 40. № 2. P. 296. https://doi.org/10.1016/j.jre.2021.01.001
  15. Martinson K.D., Sakhno D.D., Belyak V.E. et al. // Int. J. Self-Propag. High-Temp. Synth. 2020. V. 29. № 4. P. 202. https://doi.org/10.3103/S106138622004007X
  16. Martinson K.D., Cherepkova I.A., Panteleev I.B. et al. // Int. J. Self-Propag. High-Temp. Synth. 2019. V. 28. № 4. P. 266. https://doi.org/10.3103/S1061386219040101
  17. Lomanova N.A., Tomkovich M.V., Danilovich D.P. et al. // Inorg. Mater. 2020. V. 56. № 12. P. 1271. https://doi.org/10.1134/S0020168520120110
  18. Lomanova N.A., Tomkovich M.V., Sokolov V.V. et al. // J. Nanopart. Res. 2018. V. 20. № 2. P. 17. https://doi.org/10.1007/s11051-018-4125-6
  19. Lomanova N.A., Tomkovich M.V., Sokolov V.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. № 10. P. 2256. https://doi.org/10.1134/S1070363216100030
  20. Lomanova N.A., Tomkovich M.V., Osipov A.V. et al. // Russ. J. Gen. Chem. 2019. V. 89. № 9. P. 1843. https://doi.org/10.1134/S1070363219090196
  21. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. // Ceram. Int. 2021. V. 47. № 15. P. 21905. https://doi.org/10.1016/j.ceramint.2021.04.208
  22. Ostroushko A.A., Maksimchuk T.Yu., Permyakova A.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 799. https://doi.org/10.1134/S0036023622060171
  23. Ostroushko A.A., Zhulanova T.Yu., Kudyukov E.V. et al. // Phys. Chem. Aspects of the Study of Clusters, Nanostruc. Nanomater. 2022. № 14. P. 820. https://doi.org/10.26456/pcascnn/2022.14.820
  24. Ostroushko A.A., Russkikh O.V. // Nanosystems: Phys. Chem. Math. 2017. P. 476. https://doi.org/10.17586/2220-8054-2017-8-4-476-502
  25. Отрицательные ионы / Пер. с англ. под ред. Мейлихова Е.З., Радцига А.А. c предисл. Смирнова Б.М. М.: Мир, 1979.
  26. Смирнов Б.М. Отрицательные ионы. М.: Атомиздат, 1978.
  27. Ostroushko A.A., Sennikov M.Yu. // Russ. J. Inorg. Chem. 2005. V. 50. № 6. P. 933. http://www.scopus.com/inward/record.url?scp = 23844539057&partnerID = 8YFLogxK
  28. Ostroushko A.A., Sennikov M.Yu. // Russ. J. Inorg. Chem. 2008. V. 53. № 8. P. 1172. https://doi.org/10.1134/S0036023608080032
  29. Ostroushko A.A. // Inorg. Mater. 2004. V. 40. № 3. P. 259. https://doi.org/10.1023/B:INMA.0000020524.35838.de
  30. Yao G., Wang F., Wang X. et al. // Energy. 2010. V. 35. № 5. P. 2295. https://doi.org/10.1016/j.energy.2010.02.017
  31. Wang D., Pan J., Zhu D. et al. // Sci. Total Environ. 2022. V. 830. P. 154712. https://doi.org/10.1016/j.scitotenv.2022.154712
  32. Xie Y., Wang M., Wang X. et al. // J. Clean. Prod. 2022. V. 337. P. 130549. https://doi.org/10.1016/j.jclepro.2022.130549
  33. Никитин В.А. Лекции по теплотехнике. Оренбург: ОГУ, 2011.
  34. Cai Y., Zou H., Qu G. et al. // Environ. Technol. Innov. 2022. V. 28. P. 102958. https://doi.org/10.1016/j.eti.2022.102958
  35. Fossdal A., Einarsrud M.-A., Grande T. // J. Solid State Chem. 2004. V. 177. № 8. P. 2933. https://doi.org/10.1016/j.jssc.2004.05.007
  36. Gubin S.P., Koksharov Y.A., Khomutov G.B. et al. // Russ. Chem. Rev. 2005. V. 74. № 6. P. 489. https://doi.org/10.1070/RC2005v074n06ABEH000897
  37. Shankar A., Safronov A.P., Mikhnevich E.A. et al. // Soft Matter. 2017. V. 13. № 18. P. 3359. https://doi.org/10.1039/C7SM00534B
  38. Walker D.A., Kowalczyk B., De La Cruz M.O. et al. // Nanoscale. 2011. V. 3. № 4. P. 1316. https://doi.org/10.1039/C0NR00698J
  39. Skomski R. // J. Phys.: Condens. Matter. 2003. V. 15. № 20. P. R841. https://doi.org/10.1088/0953-8984/15/20/202
  40. Ivanov A.O., Zubarev A. // Materials. 2020. V. 13. № 18. P. 3956. https://doi.org/10.3390/ma13183956
  41. Mikhnevich E.A., Chebotkova P.D., Safronov A.P. // Inorg. Mater. Appl. Res. 2020. V. 11. № 4. P. 855. https://doi.org/10.1134/S2075113320040267
  42. Kantorovich S.S., Ivanov A.O., Rovigatti L. et al. // Phys. Chem. Chem. Phys. 2015. V. 17. № 25. P. 16601. https://doi.org/10.1039/C5CP01558H
  43. Almjasheva O.V., Popkov V.I., Proskurina O.V. et al. // Nanosystems: Phys. Chem. Math. 2022. V. 13. № 2. P. 164. https://doi.org/10.17586/2220-8054-2022-13-2-164-180
  44. Almjasheva O.V., Lomanova N.A., Popkov V.I. et al. // Nanosystems: Phys. Chem. Math. 2019. V. 10. № 4. P. 428. https://doi.org/10.17586/2220-8054-2019-10-4-428-437

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray diffractograms of samples of the gross composition SrFe12O19 (heat treatment at 650 ° C for 48 hours) obtained from nitrate-organic precursors of the following composition (φ = 1): 1 — PVP; 2 — PVS; 3 — glycine.

下载 (149KB)
3. Fig. 2. Values of the coercive force Hc (a) and the residual specific magnetization MR (b) for SrFe12O19 samples at different annealing temperatures.

下载 (86KB)
4. Fig. 3. Coercive force of SrFe12O19 samples depending on the applied magnetic field (a) and the intermediate annealing temperature (b) at field strengths of 3 (1) and 10 kE (2).

下载 (89KB)
5. Fig. 4. Coercive force of samples synthesized with different amounts of PVS (φ = 1 — curve 1; φ = 2 — curve 2).

下载 (64KB)
6. 5. Volumetric aggregation of SrFe12O19 nanoparticles (a), the appearance of extended aggregates of nanoparticles (b, c), largely disaggregated particles (d).

下载 (378KB)
7. Fig. 6. Interaction potentials of nanoparticles (a), curves from top to bottom: electrostatic repulsion at precursor charges equivalent to 1, 10, 100 V, respectively; magnetic interaction, van der Waals forces; resulting curves for the same charge values (b): from top to bottom - 100, 10 and 1 V.

下载 (112KB)
8. Fig. 7. Electron micrographs of strontium hexaferrite samples obtained from precursors containing glycine: a, b, c — the appearance of a jagielike structure; d — the same on the slice; e — the inner part of the “fiber”.

下载 (421KB)

版权所有 © Russian Academy of Sciences, 2024