Growth, X-ray Diffraction and Dielectric Characterization of Pb5WO8 Single Crystals in the PbO–WO3 System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Single crystals of the Pb5WO8 phase were grown in the PbO–WO3 system by crystallization of (1 – x)PbO·xWO3 (x = 0.15–0.20) mixed melts. Thermogravimetric, X-ray diffraction, and dielectric studies of the single crystals were carried out. The phase melts at 712°С with decomposition to PbO and a liquid. The Pb5WO8 crystal structure is monoclinic (space group P21/n, 293 K) with the unit cell parameters a = 7.4430(1) Å, b = 12.1156(2) Å, c = 10.6284(2) Å, β = 90.658(1)°. The Pb5WO8 structure is retained at 100 K; the minor alterations in unit cell parameters are associated only with thermal expansion. The Pb5WO8 structure has a pronounced layered character; it appears as an alternation of layers formed of WO6 octahedra and strongly distorted PbO4 and PbO5 polyhedra in the direction [010]. A detailed crystal-chemical analysis of the structure was carried out. An important role of the Pb lone pair in the formation of characteristic voids in the structure was noted. The temperature-dependent dielectric permittivity and dielectric loss tangent feature relaxation peaks associated with lead and oxygen vacancies in the structure.

About the authors

A. A. Bush

Russian Technological University (RTU MIREA)

Email: aabush@yandex.ru
119454, Moscow, Russia

V. I. Kozlov

Russian Technological University (RTU MIREA)

Email: aabush@yandex.ru
119454, Moscow, Russia

A. I. Stash

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: aabush@yandex.ru
119334, Moscow, Russia

S. A. Ivanov

Department of Chemistry, Moscow State University; Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: aabush@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia

References

  1. Chang L.L.Y. // J. Am. Ceram. Soc. 1971. V. 54. № 7. P. 357. https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
  2. Jantz S.G., Pielnhofer F., Höppe H.A. // Z. Kristallogr. 2020. V. 235. № 8–9. P. 311. https://doi.org/10.1515/zkri-2020-0041
  3. Artner C., Weil M.J. // Solid State Chem. 2013. V. 199. P. 240. https://doi.org/10.1016/j.jssc.2012.12.007
  4. Annenkov A.A., Korzhik M.V., Lecoq P. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. A490. P. 30. https://doi.org/10.1016/S0168-9002(02)00916-6
  5. Huhtinen M., Lecomte P., Luckey D. et al. Nuclear Instruments and Methods in Physics Research: Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. A545. P. 63. https://doi.org/10.1016/j.nima.2005.01.304
  6. Auffray E. // IEEE Transactions on Nuclear Science. 2008. V. 55. P. 1314. https://doi.org/10.1109/TNS.2007.913935
  7. Adzic P., Almeida N., Andelin D. et al. // J. Instrumentation. 2020. V. 5. P. 03010. https://doi.org/10.1088/1748-0221/5/03/P03010
  8. Fujita T., Muramatsu K. // Mater. Res. Bull. 1979. V. 14. P. 5. https://doi.org/10.1016/0025-5408(79)90224-1
  9. Jantz S.G., Pielnhofer F., Dialer M., Höppe H.A. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 2031. https://doi.org/10.1002/zaac.201700335
  10. Powder Diffraction files of the International Centre for Diffraction Data (ICDD). 1999.
  11. Perry D.L., Wilkinson T.J. // Appl. Phys. A: Materials Science & Processing. 2007. V. 89. № 1. P. 77. https://doi.org/10.1007/s00339-007-4073-y
  12. APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
  13. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  14. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
  15. Razzazi V., Alaei S. // Chinese Phys. 2017. V. B26. P. 116501. https://doi.org/10.1088/1674-1056/26/11/116501
  16. Sorrell C.A. // J. Am. Ceram. Soc. 1970. V. 53. P. 55. https://doi.org/10.1111/j.1151-2916.1970.tb15964.x
  17. Shannon R.D. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  18. Salje E. // Acta Crystallogr. 1977. V. B33. P. 574. https://doi.org/10.1107/S0567740877004130
  19. Diehl R., Brandt G., Salje E. // Acta Crystallogr. 1978. V. B34. P. 1105. https://doi.org/10.1107/S0567740878005014
  20. Brese N., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
  21. Brown I.D. Structure and Bonding in Crystals. V. 2. N.Y.: Academic Press, 1981. P. 49.
  22. Сийдра О.И. Кристаллохимия кислородсодержащих минералов и неорганических соединений низковалентных катионов таллия, свинца и висмута. Автореф. дис. … докт. геол.-мин. наук. СПб., 2016. 25 с.
  23. Кривовичев С.В. Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: Изд-во СПб. ун-та 2001, 198 с.
  24. Krivovichev S.V. Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg University Press, 2009. 398 p.
  25. Müller U. Inorganic Structural Chemistry. John Wiley & Sons Ltd, 2006. https://doi.org/10.1002/9780470057278
  26. Уэллс А. Структурная неорганическая химия: В 3-х т. Перевод с англ. М.: Мир, 1987.
  27. Бокий Г.Б. Кристаллохимия. М.: Наука, 1971. 400 с.
  28. Gillespie R.J. Molecular Geometry. London: Van Nostrand Reinhold, 1972.
  29. Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.
  30. Партэ Э. Некоторые главы структурной неорганической химии. Пер. с англ. M.: Мир, 1993. 144 с.
  31. Асланов Л.А. Структуры веществ. М.: Изд-во Моск. ун-та, 1989. 161 с.
  32. Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
  33. Balic Zunic T., Vickovic I. // J. Appl. Crystallogr. 1996. V. 29. P. 305. https://doi.org/10.1107/S0021889895015081
  34. Gagné O.C., Hawthorne F.C. // Acta Crystallogr. 2018. V. B74. P. 63. https://doi.org/10.1107/S2052520617017437
  35. Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Kristallogr. 2008. V. 223. P. 114. https://doi.org/10.1524/zkri.2008.0009
  36. Nihtianova D.D., Ivanov V.T., Yamakov V.I. // Z. Kristallogr. 1997. V. 212. P. 191. https://doi.org/10.1524/zkri.1997.212.3.191
  37. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
  38. Jonscher A.K. Dielectric Relaxation in Solids. London: Chelsea Dielectric Press, 1983. 380 p.
  39. Bidault O., Goux P., Kchikech M. et al. // Phys. Rev. 1994. V. 49B. № 12. P. 7868. https://doi.org/10.1103/PhysRevB.49.7868
  40. Kang B.S., Choi S.K., Park C.H. // J. Appl. Phys. 2003. V. 94. № 3. P. 1904. https://doi.org/10.1063/1.1589595

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (560KB)
3.

Download (78KB)
4.

Download (104KB)
5.

Download (1007KB)
6.

Download (929KB)
7.

Download (718KB)
8.

Download (402KB)

Copyright (c) 2023 А.А. Буш, В.И. Козлов, А.И. Сташ, С.А. Иванов