A New Structural Type of Bismuth(III) Dithiocarbamato-Chlorido Complexes: Preparation, Structural Organization, and Thermal Behavior of Binuclear Compounds [Bi2{S2CN(CH2)6}4(μ2-Cl)2] and [Bi2{S2CN(CH2)6}4(μ2-Cl)2]·2CH2Cl2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heteroleptic compounds of bismuth(III) adopting a new binuclear structural type: hexamethylenedithiocarbamato(HmDtc)-chloride of [Bi2(S2CNHm)4(μ2-Cl)2] (I) and its solvated form [Bi2(S2CNHm)4(μ2-Cl)2]·2CH2Cl2 (II) have been isolated and studied by X-ray diffraction, IR spectroscopy, and simultaneous thermal analysis. Despite the identical chemical composition, the structure of binuclear molecules in I and II differs significantly. In the first case, the noncentrosymmetric molecule includes two nonequivalent moieties of [Bi(S2CNHm)2Cl], which are combined by μ2-Cl ligands to form the [Bi–(μ2-Cl)2–Bi] metallocycle in the butterfly conformation: Bi(1)–Bi(2) 4.0785(5) Å, Cl(1)–Cl(2) 3.936(2) Å. On the contrary, in the solvated form II, the complex is centrosymmetric and four-membered [Bi2Cl2] ring is stabilized in a rhombic configuration: Bi(1)–Bi(1)a 3.9592(9) Å and Cl(1)–Cl(1)a 4.540(4) Å. According to the microprobe method, the main residual substance after the thermolysis of the complexes is microcrystalline Bi2S3 with inclusions of metallic bismuth particles.

About the authors

E. V. Novikova

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
675000, Blagoveshchensk, Russia

K. L. Isakovskaya

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia

Email: alexander.v.ivanov@chemist.com
119991, Moscow, Russia; 125047, Moscow, Russia

A. V. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: alexander.v.ivanov@chemist.com
675000, Blagoveshchensk, Russia

References

  1. Koh Y.W., Lai C.S., Du A.Y. et al. // Chem. Mater. 2003. V. 15. № 24. P. 4544. https://doi.org/10.1021/cm021813k
  2. Ozturk I.I., Banti C.N., Kourkoumelis N. et al. // Polyhedron. 2014. V. 67. P. 89. https://doi.org/10.1016/j.poly.2013.08.052
  3. Jamaluddin N.A., Baba I., Halim S.N.A., Tiekink E.R.T. // Z. Kristallogr. NCS. 2015. V. 230. № 3. P. 239. https://doi.org/10.1515/ncrs-2015-0008
  4. Новикова Е.В., Иванов А.В., Егорова И.В. и др. // Коорд. химия. 2019. Т. 45. № 10. С. 599.
  5. Teske C.L., Terraschke H., Mangelsen S., Bensch W. // Z. Naturforsch. 2022. V. 77. № 4–5. P. 203. https://doi.org/10.1515/znb-2021-0176
  6. Новикова Е.В., Исаковская К.Л., Анцуткин О.Н., Иванов А.В. // Коорд. химия. 2021. Т. 47. № 1. С. 48.
  7. Bharadwaj P.K., Lee A.M., Skelton B.W. et al. // Aust. J. Chem. 1994. V. 47. № 2. P. 405. https://doi.org/10.1071/CH9940405
  8. Raston C.L., Rawbottom G.L., White A.H. // Dalton Trans. 1981. № 6. P. 1379. https://doi.org/10.1039/DT9810001379
  9. Новикова Е.В., Заева А.С., Денисов Г.Л. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 103.
  10. Иванов А.В., Конзелко А.А., Герасименко А.В. и др. // Журн. неорган. химии. 2005. Т. 50. № 11. С. 1827.
  11. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  12. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  13. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  14. Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
  15. Казицына Л.A., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
  16. Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707.
  17. Иванов А.В., Ивахненко Е.В., Герасименко А.В., Форшлинг В. // Журн. неорган. химии. 2003. Т. 48. № 1. С. 52.
  18. Гремлих Г.У. Язык спектров. Введение в интерпретацию спектров органических соединений. М.: ООО “Брукер Оптик”, 2002. 93 с.
  19. Тарасевич Б.Н. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. M.: МГУ, 2012. 22 с.
  20. Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. № 4. P. 687. https://doi.org/10.1134/S0036023622010077
  21. Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1–2. P. 11. https://doi.org/10.1007/BF01209549
  22. Entrena A., Campos J., Gomez J.A. et al. // J. Org. Chem. 1997. V. 62. № 2. P. 337. https://doi.org/10.1021/jo951950j
  23. Arda M., Ozturk I.I., Banti C.N. et al. // RSC Adv. 2016. V. 6. P. 29026. https://doi.org/10.1039/C6RA01181K
  24. Abrahams B.F., Hoskins B.F., Winter G. // Acta Crystallogr. C. 1990. V. 46. № 3. P. 391. https://doi.org/10.1107/S0108270189007420
  25. Mensforth E.J., Hill M.R., Batten S.R. // Inorg. Chim. Acta. 2013. V. 403. P. 9. https://doi.org/10.1016/j.ica.2013.02.019
  26. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031.
  27. Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375. https://doi.org/10.1524/zkri.2009.1158
  28. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
  29. Ge Z.-H., Qin P., He D. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. № 5. P. 4828. https://doi.org/10.1021/acsami.6b14803

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (461KB)
3.

Download (406KB)
4.

Download (387KB)
5.

Download (430KB)
6.

Download (126KB)
7.

Download (131KB)
8.

Download (1MB)

Copyright (c) 2023 Е.В. Новикова, К.Л. Исаковская, А.В. Иванов