A New Approach to Prepare LuFeMgO4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for the production of LuFeMgO4 based on the combustion reaction of a gel-like precursor prepared from metal nitrates and fossil fuels has been proposed. The possibility to prepare this oxide from stoichiometric compositions of metal nitrates with polyvinyl alcohol (PVA) and glycine has been studied. The adiabatic combustion temperatures Tad have been estimated for the systems under consideration. The combustion products of PVA-nitrate and glycine-nitrate compositions before and after their heat treatment have been studied using X-ray diffraction analysis and IR spectroscopy. It has been established that the combustion reaction products of the PVA-nitrate composition are an X-ray amorphous powder, while those of the glycine-nitrate composition are a mixture of nanocrystalline oxides containing 52.5 wt % LuFeMgO4. According to X-ray diffraction and SEM data, 4-h annealing of this mixture at 1300°C leads to the formation of a single-phase LuFeMgO4 powder with a layered microstructure and a grain size of about 1–2 μm.

About the authors

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
119991, Moscow, Russia

О. N. Kondrat’eva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
119991, Moscow, Russia

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, 119991, Moscow

A. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: gavrich@igic.ras.ru
119991, Moscow, Russia

References

  1. Kimizuka N., Takayama E. // J. Solid State Chem. 1981. V. 40. P. 109. https://doi.org/10.1016/0022-4596(81)90368-6
  2. Wiedenmann A., Gunsser W., Rossat-Mignod J. et al. // J. Magn. Magn. Mater. 1983. V. 31–34. P. 1442. https://doi.org/10.1016/0304-8853(83)90962-9
  3. Ikeda N., Kohn K., Himoto E. et al. // J. Phys. Soc. Jpn. 1995. V. 64. P. 4371. https://doi.org/10.1143/JPSJ.64.4371
  4. Todate Y., Kikuta C., Himoto E. et al. // J. Phys.: Condens. Matter. 1998. V. 10. P. 4057. https://doi.org/10.1088/0953-8984/10/18/015
  5. Tanaka M., Siratori K., Kimizuka N. et al. // J. Phys. Soc. Jpn. 1984. V. 53. P. 4113. https://doi.org/10.1143/JPSJ.53.4113
  6. Qin Y., Wang Z., Chen X.M. et al. // J. Appl. Phys. 2010. V. 108. P. 084111. https://doi.org/10.1063/1.3500309
  7. Tanaka M., Himoto E., Todate Y. et al. // J. Phys. Soc. Jpn. 1995. V. 64. P. 2621. https://doi.org/10.1143/JPSJ.64.2621
  8. Todate Y., Ohnishi N., Tanaka M. et al. // Hyperfine Interact. 1997. V. 104 P. 375. https://doi.org/10.1023/A:1012689507474
  9. Iida J., Takekawa Sh., Kimizuka N. et al. // J. Cryst. Growth. 1990. V. 102. P. 398. https://doi.org/10.1016/0022-0248(90)90397-4
  10. Todate Y., Himoto E., Kikuta C. et al. // Phys. Rev. B. 1998. V. 57. P. 485. https://doi.org/10.1103/PhysRevB.57.485
  11. Lackner M. Combustion Synthesis: Novel Routes to Novel Materials. Bentham Science Publishers Ltd., 2010.
  12. Kondrat'eva O.N., Smirnova M.N., Nikiforova G.E. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 6559. https://doi.org/10.1016/j.jeurceramsoc.2021.05.063
  13. Kondrat'eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Ceram. Int. 2023. V. 49. P. 179. https://doi.org/10.1016/j.ceramint.2022.08.326
  14. Kondrat'eva O.N., Nikiforova G.E., Shevchenko E.V. et al. // Ceram. Int. 2020. V. 46. № 4. P. 11390. https://doi.org/10.1016/j.ceramint.2020.01.169
  15. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosyst.: Phys. Chem. Math. 2021. V. 12. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217
  16. Popkov V.I., Martinson K.D., Kondrashkova I.S. et al. // J. Alloys Compd. 2022. V. 859. Article 157812. https://doi.org/10.1016/j.jallcom.2020.157812
  17. Carlos E., Martins R., Fortunato E. et al. // Chem. Eur. J. 2020. V. 26. P. 9099. https://doi.org/10.1002/chem.202000678
  18. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. et al. // J. Sol-Gel Sci. Technol. 2020. V. 93. P. 251. https://doi.org/10.1007/s10971-019-05189-8
  19. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
  20. Smirnova M.N., Kop’eva M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 978. https://doi.org/10.1134/S0036023622070221
  21. Zhuravlev V.D., Dmitriev A.V., Vladimirova E.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66 P. 1895. https://doi.org/10.1134/S0036023621120226
  22. Patil K.C., Hedge M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, 1st ed., Singapore: World Scientific Publishing Co. Pte. Ltd., 2008.
  23. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html
  24. Dorofeeva O.V., Ryzhova O.N. // J. Chem. Thermodynamics. 2009. V. 41. P. 433. https://doi.org/10.1016/j.jct.2008.12.001
  25. He Z., Xia Z., Hu J. et al. // J. Polym. Res. 2019. V. 26. Article 219. https://doi.org/10.1007/s10965-019-1894-2
  26. Varma A., Mukasyan A.S., Rogachev A.S. et al. // Chem. Rev. 2016. V. 116. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  27. Barin I. Thermochemical Data of Pure Substances, third ed., VCH Verlagsgesellschaft mbH, 1995.
  28. Larkin P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Amsterdam: Elsevier, 2011.
  29. Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Switzerland: Springer International Publishing, 2016.
  30. Кондратьева О.Н., Смирнова М.Н., Никифорова Г.Е. // XI Конференция молодых ученых по общей и неорганической химии: Тез. докл. конф. М., 2021. 312 с.
  31. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (311KB)
3.

Download (376KB)
4.

Download (89KB)
5.

Download (79KB)
6.

Download (65KB)
7.

Download (677KB)

Copyright (c) 2023 М.Н. Смирнова, О.Н. Кондратьева, Г.Е. Никифорова, А.В. Хорошилов