Preparation and Reduction of Graphene Oxide/Zinc Borate Composites as Candidate Flame-Retardant Materials
- 作者: Ivannikova A.S.1,2, Ioni Y.V.1, Sapkov I.V.1,3, Kozlova L.O.4, Kozerozhets I.V.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Materials Science Department, Moscow State University
- Physics Department, Moscow State University
- 119991, Moscow, Russia
- 期: 卷 68, 编号 6 (2023)
- 页面: 857-864
- 栏目: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/665250
- DOI: https://doi.org/10.31857/S0044457X2360007X
- EDN: https://elibrary.ru/UGEFHG
- ID: 665250
如何引用文章
详细
A new method for manufacturing composites comprising graphene oxide (GO) and zinc borate nanopowders is described. The method comprises ultrasonic stirring of precursor slurries followed by removal of water. Exposure to supercritical isopropanol provides a composite comprising reduced graphene oxide (RGO) and zinc borate nanopowder due to removal of oxygen functions from the graphene oxide structure, thereby providing a uniform distribution of zinc borate particles over the surface of reduced graphene oxide.
作者简介
A. Ivannikova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Materials Science Department, Moscow State University
Email: irina135714@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
Yu. Ioni
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: irina135714@yandex.ru
119991, Moscow, Russia
I. Sapkov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Physics Department, Moscow State University
Email: irina135714@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
L. Kozlova
119991, Moscow, Russia
Email: irina135714@yandex.ru
119991, Moscow, Russia
I. Kozerozhets
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: irina135714@yandex.ru
119991, Moscow, Russia
参考
- Wang H., Yin P. // Case. Stud. Constr. Mater. 2023. V. 18. P. e01748. https://doi.org/10.1016/j.cscm.2022.e01748
- Dong J., Li G., Gao J. et al. // Sci. Total. Environ. 2022. V. 848. P. 157695. https://doi.org/10.1016/j.scitotenv.2022.157695
- Ling S., Lu C., Fu M. et al. // J. Clean. Prod. 2022. V. 373. P. 133970. https://doi.org/10.1016/j.jclepro.2022.133970
- Chai K., Xu S. // Adv. Powder. Technol. 2022. V. 33. P. 103776. https://doi.org/10.1016/j.apt.2022.103776
- Pan J., Wu M., Chu H. et al. // Macromol. Mater. Eng. 2022. V. 307. P. 2200259. https://doi.org/10.1002/mame.202200259
- Zhang C., He H., Li Q. et al. // Polym. Int. V. 71. P. 1193. https://doi.org/10.1002/pi.6399
- Miao Z., Yan D., Wang X. et al. // Chin. Chem. Lett. 2021. V. 33. P. 4026. https://doi.org/10.1016/j.cclet.2021.12.003
- Ozyhar T., Tschannen C., Thoemen H. et al. // Fire. And. Materials. 2022. V. 46. P. 595. https://doi.org/10.1002/fam.3009
- Tong C., Zhang S., Zhong T. et al. // Chem. Eng. J. 2021. V. 413. P. 129440. https://doi.org/10.1016/j.cej.2021.129440
- Yang K., Li X. // Holzforschung. 2019. V. 73. P. 599. https://doi.org/10.1515/hf-2018-0167
- M. Zia-ul-Mustafa, Faiz A., Sami U. et al. // Prog. Org. Coat. 2017. V. 102. P. 201. https://doi.org/10.1016/j.porgcoat.2016.10.014
- Guo L., Lv Z., Zhu T. et al. // Sci. Total. Environ. 2023. V. 858. P. 159746. https://doi.org/10.1016/j.scitotenv.2022.159746
- Xu Z., Zhan J., Xu Z. et al. // Molecules. 2022. V. 27. P. 8783. https://doi.org/10.3390/molecules27248783
- Liu J., Zeng L., Ai L. et al. // Vinyl. Addit. Technol. 2022. V. 28. P. 591. https://doi.org/10.1002/vnl.21909
- Xu Y., Zhou R., Mu J. et al. // Colloids. Surf. A. Physicochem. Eng. Asp. 2022. V. 640. P. 128400. https://doi.org/10.1016/j.colsurfa.2022.128400
- Atay H.Y., Celik E. // Polym. Compos. 2016. V. 24. P. 419. https://doi.org/10.1177/096739111602400605
- Li Y., Hao Z., Cao H. et al. // Opt Laser Technol. 2023. V. 160. P. 109054. https://doi.org/10.1016/j.optlastec.2022.109054
- Tu M., Jia L., Kong X. et al. // J. Colloid. Interface. Sci. 2023. V. 635. P. 105. https://doi.org/10.1016/j.jcis.2022.12.126
- Sahoo S., Bhuyan M., Sahoo D. // J. Alloys Compd. 2023. V. 935. P. 168097. https://doi.org/10.1016/j.jallcom.2022.168097
- Ma Q., Liu M., Cui F. et al. // Carbon. 2023. V. 204. P. 336. https://doi.org/10.1016/j.carbon.2022.12.066
- Li J., Wu W., Duan R. et al. // Appl. Surf. Sci. 2023. V. 611. P. 155736. https://doi.org/10.1016/j.apsusc.2022.155736
- Chen O., Liu L., Zhang A. et al. // Chem. Eng. J. 2023. V. 454. P. 140424. https://doi.org/10.1016/j.cej.2022.140424
- Zheng H., Liu H., Duan H. // Mater. Lett. 2023. V. 330. P. 133351. https://doi.org/10.1016/j.matlet.2022.133351
- Yang F., Zhao H., Wang Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2022. V. 648. P. 129326. https://doi.org/10.1016/j.colsurfa.2022.129326
- Chua C.K., Pumera M. // Chem. Soc. Rev. 2014. V. 43. P. 291. https://doi.org/10.1039/C3CS60303B
- Agarwal V., Per B. Zetterlund. // Chem. Eng. J. 2021. V. 405. P. 127018. https://doi.org/10.1016/j.cej.2020.127018
- Koreshkova A.N., Gupta V., Peristyy A. et al. // Talanta. 2019. V. 205. P. 120081. https://doi.org/10.1016/j.talanta.2019.06.081
- Sang B., Li Zw., Li Xh. et al. // J. Mater. Sci. 2016. V. 51. P. 8271. https://doi.org/10.1007/s10853-016-0124-0
- Qian X., Song L., Yu B. et al. // J. Mater. Chem. A. 2013. V. 1. P. 6822. https://doi.org/10.1039/C3TA10416H
- Pishch I.V., Rotman T.I., Romanenko Z.A. et al. // Glass. Ceram. 1987. V. 44. P.174. https://doi.org/10.1007/BF00701660
- Rajpoot Y., Sharma V., Basak S. et al. // J. Nat. Fibers. 2022. V. 19. P. 5663. https://doi.org/10.1080/15440478.2021.1889431
- Liu Z., Li Z., Zhao X. et al. // Polymers. 2018. V. 10. P. 625. https://doi.org/10.3390/polym10060625
- Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. P. 212. https://doi.org/10.3390/inorganics10110212
- Zhang Z., Wu W., Zhang M. et al. // Appl. Surf. Sci. 2017. V. 425. P. 896. https://doi.org/10.1016/j.apsusc.2017.07.101
- Zuo L., Fan W., Zhang Y. et al. // Compos. Sci. Technol. 2017. V. 139. P. 57. https://doi.org/10.1016/j.compscitech.2016.12.008
- Leng Q., Li J., Wang Y. // New J. Chem. 2020. V. 44. P. 4568. https://doi.org/10.1039/C9NJ06253J
- Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
- Yu P., Wang H., Bao R. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 1557. https://doi.org/10.1021/acssuschemeng.6b02254
- Eigler S., Dotzer C., Hof F. et al. // Chem. Eur. J. 2013. V. 19. P. 9490. https://doi.org/10.1002/chem.201300387
- Aliyev E., Filiz V., Khan M.M. et al. // Nanomaterials. 2019. V. 9. P. 1180. https://doi.org/10.3390/nano9081180
- Zheng Y., Qu Y., Tian Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2009. V. 349. P. 19. https://doi.org/10.1016/j.colsurfa.2009.07.039
- López-Díaz D., López Holgado M., García-Fierro J. et al. // J. Phys. Chem. 2017. V. 121. P. 20489. https://doi.org/10.1021/acs.jpcc.7b06236
- Perumbilavil S., Sankar P., T. Priya Rose T.P. et al. // Appl. Phys. Lett. 2015. V. 107. P. 051104. https://doi.org/10.1063/1.4928124
- Farah S., Farkas A., Madarász J. et al. // J. Therm. Anal. Calorim. 2020. V. 142. P. 331. https://doi.org/10.1007/s10973-020-09719-3
- Liu C., Wu W., Shi Y. et al. // Compos. B. Eng. 2020. V. 203. P. 108486. https://doi.org/10.1016/j.compositesb.2020.108486
- Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
- Tkachev S.V., Buslaeva E.Y., Naumkin A.V. et al. // J. Inorg. Mater. 2012. V. 48. P. 796. https://doi.org/10.1134/S0020168512080158
- Ioni Y.V., Kraevsky S.V., Groshkova Y.A. et al. // Mendeleev Commun. 2021. V. 35. P. 718. https://doi.org/10.1016/j.mencom.2021.09.042
- Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
补充文件
