Mechanochemical Synthesis of closo-Decaborate Anion Derivatives with Pendant Functional Groups
- Autores: Matveev E.Y.1,2, Kubasov A.S.1, Nichugovskii A.I.2, Avdeeva V.V.1, Zhizhin K.Y.1,2, Kuznetsov N.T.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University
- Edição: Volume 68, Nº 6 (2023)
- Páginas: 724-736
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/665236
- DOI: https://doi.org/10.31857/S0044457X22602243
- EDN: https://elibrary.ru/UETDTF
- ID: 665236
Citar
Resumo
A new method for the preparation of derivatives of the closo-decaborate anion with pendant functional groups has been developed, which includes the reaction of 1,4-dioxane, tetrahydropyran, and tetrahydrofuran derivatives of the [B10H10]2– anion with C-, O-, S-, and F-nucleophilic reagents (potassium cyanide, potassium hydroxide, sodium acetate, potassium hydrosulfide, potassium thiocyanate, sodium thiosulfate, and potassium fluoride) under mechanochemical conditions. It has been shown that these reactions proceed through the opening of exopolyhedral substituents of the oxonium type and lead to the formation of closo-decaborates with the corresponding С-, O-, S-, and Hal-functional groups. The developed method makes it possible to synthesize derivatives of the [B10H10]2– anion with pendant groups of various structures in a short time and without using aprotic polar solvents, which greatly facilitates the process of product isolation. The resulting closo-decaborates due to the presence of donor centers of various types can be used as polydentate ligands to obtain complex compounds of d-elements. In addition, the synthesized compounds can be used as a platform for further functionalization due to the reactivity of the attached pendant groups. The obtained derivatives of the [B10H10]2– anion have been studied by elemental analysis, IR, 11B, 13C, 1H NMR spectroscopy, and ESI mass spectrometry. The structure of Cs2[B10H9O(CH2)2O(CH2)2SCN] compound has been determined using X-ray diffraction.
Sobre autores
E. Matveev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University
Email: cat1983@yandex.ru
119991, Moscow, Russia; 119571, Moscow, Russia
A. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: cat1983@yandex.ru
119991, Moscow, Russia
A. Nichugovskii
Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University
Email: cat1983@yandex.ru
119571, Moscow, Russia
V. Avdeeva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: cat1983@yandex.ru
119991, Moscow, Russia
K. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University
Email: cat1983@yandex.ru
119991, Moscow, Russia; 119571, Moscow, Russia
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: avdeeva.varvara@mail.ru
119571, Moscow, Russia
Bibliografia
- Zhao X., Yang Z., Chen H., Wang Z. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
- Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czechosl. Chem. Commun. 2010. V. 75. № 11. P.1149. https://doi.org/10.1135/cccc2010054
- Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czechosl. Chem. Commun. 2002. V. 67. № 6. P. 679. https://doi.org/10.1135/cccc20020679
- Sivaev I.B. // Chem. Heterocycl. Compd. 2017. V. 53. № 6. P. 638. https://doi.org/10.1007/s10593-017-2106-9
- Yan Y., Rentsch D., Battaglia C. et al. // Dalton Trans. 2017. V. 46. № 37. P. 12434. https://doi.org/10.1039/C7DT02946B
- Yan J., Yang W., Zhang Q. et al. // Chemical Communications. 2020. V. 56. № 79. P. 11720. https://doi.org/10.1039/D0CC04709K
- Dash B.P., Satapathy R., Maguire J.A. et al. // New J. Chem. 2011. V. 35. № 10. P. 1955. https://doi.org/10.1039/C1NJ20228F
- Ould-Amar S., Peti E., Granie D. et al. // Renewable Energy. 2019. V. 143. P. 551. https://doi.org/10.1016/j.renene.2019.05.019
- Goszczyński T.M., Fink K., Boratyński J. et al. // Expert Opin. Biol. Ther. 2018. V. 18. № 1. P. 205. https://doi.org/10.1080/14712598.2018.1473369
- Zharkov D.O., Yudkina A.V., Riesebeck T. et al. // Am. J. Cancer Res. 2021. V. 11. № 10. P. 4668.
- Ali F., Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
- Leśnikowski Z.J., Schinazi R.F. // J. Org. Chem. 1993. V. 58. № 24. P. 6531. https://doi.org/Leśnikowski.1021/jo00076a001
- Lesnikowski Z.J., Shi J., Schinazi R.F. // J. Organometal. Chem. 1999. V. 581. P. 156. https://doi.org/10.1016/S0022-328X(99)00129-1
- Sun Y.J., Zhang J.L., Zhang Y.B. et al. // Chemistry. 2018. V. 24. P. 10364 https://doi.org/10.1002/chem.201801602
- Białek-Pietrasa M., Olejniczak A.B., Paradowska E. et al. // J. Organomet. Chem. 2015. V. 798. P. 99. https://doi.org/10.1016/j.jorganchem.2015.07.002
- Авдеева В.В., Гараев Т.М., Малинина Е.А. и др. // Журн. неорган. хим. 2022. Т. 67. № 1. С. 33] https://doi.org/10.1134/S0036023622010028
- Tetsushi Totani, Katsutoshi Aono, Kiyoe Yamamoto, Katsuya Tawara // J. Med. Chem. 1981. V. 24. № 12. P. 1492. https://doi.org/10.1021/jm00144a024
- Матвеев Е.Ю., Кубасов А.С., Разгоняева Г.А. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 858.
- Нелюбин А.В., Клюкин И.Н., Жданов А.П. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 134.
- Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1750. https://doi.org/10.1134/S0036023619140043
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- Klyukin I.N., Zhdanov A.P., Matveev E.Yu. et al. // J. Inorg. Chem. Commun. 2014. V. 50. P. 28. https://doi.org/10.1016/j.inoche.2014.10.008
- Klyukin I.N., Kubasov A.S., Limarev I.P. et al. // Polyhedron. 2015. V. 101. P. 215. https://doi.org/10.1016/j.poly.2015.09.025
- Клюкин И.Н., Воинова В.В., Селиванов Н.А. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1536.
- Nelyubin A.V., Klyukin I.N., Novikov et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/J.MENCOM.2021.03.018
- Nelyubin A.V., Selivanov N.A., Bykov A.Y. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
- Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- Голубев А.В., Кубасов А.С., Турышев Е.С., и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1198.
- Kubasov A.S., Matveev E.Y., Turyshev E.S. et al. // Inorgan. Chim. Acta. 2018. V. 477. P. 277. https://doi.org/10.1016/j.ica.2018.03.013
- Zhdanov A.P., Klyukin I.N., Bykov A.Y. et al. // Polyhedron. V. 123. P. 176. https://doi.org/10.1016/j.poly.2016.11.035
- Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur and Silicon and the Related Elements. 2019. P. 983 https://doi.org/10.1080/10426507.2019.1631312
- Laskova J., Ananiev I., Kosenko I. et al. // Dalton Transactions. 2022. V. 51. № 8. P. 3051.
- Avdeeva V.V., Malinina E.A., Sivaev I.B. et al. // Crystals. 2016. V. 6. P. 60. https://doi.org/10.3390/cryst6050060
- Malinina E.A., Avdeeva V.V., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2148. https://doi.org/10.1134/S0036023610140032
- Kubasov A.S., Matveev E.Yu., Retivov V.M. et al. // Russ. Chem. Bull. 2014. V. 63. P. 187. https://doi.org/10.1007/s11172-014-0412-2
- Matveev E.Y., Novikov I.V., Kubasov AS. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 187. https://doi.org/10.1134/S0036023621020121
- Semioshkin A.A., Sivaev I.B., Bregadze V.I. // Dalton Trans. 2008. V. 8. P. 977. https://doi.org/10.1039/B715363E
- Матвеев Е.Ю., Акимов С.С., Кубасов А.С. и др. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 827.
- Prikaznov A.V., Las’kova Y.N., Semioshkin A.A. et al. // Russ. Chem. Bull. 2011. V. 60. № 12. P. 2550. https://doi.org/10.1007/s11172-011-0392-4
- Матвеев Е.Ю., Лимарев И.П., Ничуговский А.И. и др. // Журн. неорган. химии. 2019. Т. 64. № 8. С. 811.
- Матвеев Е.Ю., Новиков С.С., Левицкая В.Я. и др. // Тонкие химические технологии. 2022. Т. 17. № 5. С. 427.
- Kikuchi S., Kanoh D., Sato S. et al. // J. Controlled Release. 2016. V. 237. P. 160. https://doi.org/10.1016/j.jconrel.2016.07.017
- Laskova J., Kozlova A., Ananyev I. et al. // J. Organomet. Chem. 2017. V. 834. P. 64. https://doi.org/10.1016/j.jorganchem.2017.02.009
- Serdyukov A., Kosenko I., Druzina A., Grin et al. // J. Organomet. Chem. 2021. V. 946. P. 121905. https://doi.org/10.1016/j.jorganchem.2021.121905
- Imperio D., Muz B., Azab et al. // Eur. J. Org. Chem. 2019. V. 2019. № 43. P. 7228. https://doi.org/10.1002/ejoc.201901412
- Druzina A.A., Kosenko I.D., Zhidkova O.B. // INEOS Open. 2020. V. 3. № 2. P. 70. https://doi.org/10.32931/io2008a
- Матвеев Е.Ю., Левицкая В.Я., Новиков С.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1717.
- Semioshki A., Laskov J., Zhidkov O. et al. // J. Organomet. Chem. 2010. V. 695. № 3. P. 370. https://doi.org/10.1016/j.jorganchem.2009.10.038
- Sivaev I.B., Kulikova N.Y., Nizhnik E.A. et al. // J. Organomet. Chem. 2008. V. 693. № 3. P. 519. https://doi.org/10.1016/j.jorganchem.2007.11.027
- Beillard A., Bantreil X., Métro T.X. et al. // Chem. Rev. 2019. V. 119. № 12. P. 7529. https://doi.org/10.1021/acs.chemrev.8b00479
- Friščić T., Mottillo C., Titi H.M. // Angew. Chem. 2020. V. 132. № 3. P. 1030. https://doi.org/10.1002/ange.201906755
- Tan D., García F. // Chem. Rev. 2019. V. 48. № 8. P. 2274. https://doi.org/10.1039/C7CS00813A
- Suárez-Alcántara K., Tena García J.R. // Materials. 2021. V. 14. № 10. P. 2561. https://doi.org/10.3390/ma14102561
- Mal’tseva N.N., Generalova N.B., Masanov A.Yu. et al. // Rus. J. Inorg. Chem. 2012. V. 57. № 13. P. 1631. https://doi.org/10.1134/S0036023612130049
- Huot J., Cuevas F., Deledda S. et al. // Materials. 2019. V. 12. № 17. P. 2778. https://doi.org/10.3390/ma12172778
- Shin S., Um K., Ko G.H. et al. // Org. Lett. 2022. V. 24. № 17. P. 3128. https://doi.org/10.1021/acs.orglett.2c00756
- Sha Y., Zhou Z., Zhu M. et al. // Angew. Chem. Int. Ed. 2022. P. e202203169.
- Wang Q., Liu B., Feng K. et al. // Adv. Synthesis Catalysis. 2022. V. 364. № 24. P. 4174.
- Volkov V.V., Myakishev K G. // Inorg. Chim. Acta. 1999. V. 289. № 1–2. P. 51. https://doi.org/10.1016/S0020-1693(99)00057-2
- Borisov A.P., Makhaev V.D., Usyatinskii A.Y. et al. // Russ. Chem. Bull. 1993. V. 42. № 10. P. 1637. https://doi.org/10.1007/BF00697029
- Volkov V.V., Myakishev K.G. // 8 Int. Meeting on Boron Chemistry (IMEBORON VIII), Program and Abstracts, The University of Tennessee, Knoxville, USA, 1993, p. 151
- Malinina E.A., Korolenko S.E., Kubasov A.S. et al. // J. Solid State Chem. 2021. V. 302. P. 122413. https://doi.org/10.1016/j.jssc.2021.122413
- Жижин К.Ю., Мустяца В.Н., Малинина Е.А. и др. // Журн. неорган. химии. 2004. Т. 49. № 2. С. 221.
- Органикум. В 2-х т. Пер. с нем. Т. 1. М.: Мир, 1992.
- Руководство по неорганическому синтезу. Пер. с нем. /Под ред. Брауэра Г. М.: Мир, 1985. Т. 2.
- Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr. Sect. C Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Pretsch E., Clerc T., Seibl J. et al. Tables of spectral data for structure determination of organic compounds. Springer Science & Business Media, 2013.
Arquivos suplementares
