Influence of surfactant on thermal stability of mechanically synthesized phase of Ti5Si3CX

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Influenceof stearic acid and graphite additives during mechanical alloying oftitanium and silicon in petroleum ether on the structural-phase stateand stability of titanium carbosilicide during annealing up to 1300°Cis studied. Barrier layers on the particles formed inthe presence of surfactants are shown to enhance stability ofcarbosilicide more effectively than graphite does. Surfactant additives promote theformation of additional silicon-containing phase and more efficient sintering ofparticles.

作者简介

M. Eremina

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: mrere@mail.ru
Izhevsk, 426067 Russia

S. Lomaeva

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mrere@mail.ru
Izhevsk, 426067 Russia

参考

  1. Gao N.F., Li J.T., Zhang D., Miyamoto Y. // J. Europ. Ceram. Soc. 2002. V. 22. P. 2365. https://doi.org/10.1016/S0955-2219(02)00021-3
  2. Ghosh N.C. Synthesis and Tribological Characterization of in-situSpark Plasma Sintered Ti3SiC2and Ti3SiC2-TiC Composites.PhD theses. 2012. Oklahoma State University. https://shareok.org/bitstream/handle/11244/9936/Ghosh_okstate_0664M_12424.pdf?sequence=1&isAllowed=y
  3. Chahhou B., Roger J. // Ceram. Int. 2022. V. 48(23A). P. 34635. https://doi.org/10.1016/j.ceramint.2022.08.051
  4. Kero I. Ti3SiC2Synthesis from TiC and Si Powders. PhD theses. 2010. Luleå Universityof Technology. https://doi.org/10.1002/9780470456361.ch3
  5. Sabooni S.,Karimzadeh F., Abbasi M.H. //Bull. Mater. Sci. 2012. V. 35(3). P. 439. https://doi.org/10.1007/s12034-012-0298-2
  6. Thom A.J., Kim Y., Akinc M. // MRS Online Proceedings Library1992. V. 288. P. 1037. https://doi.org/10.1557/PROC-288-1037
  7. Tang Z., Williams J.J.,Thom A.J., Akinc M. // Intermetallics. 2008. V. 16. P. 1118. doi: 10.1016/j.intermet.2008.06.013
  8. Williams J.J., Akinc M. //Oxidation of Metals. 2002. V. 58(1/2). P. 57. https://doi.org/10.1023/A:1016012507682
  9. Katz A.P.,Lipsitt H.A., Mah T., Mendiratta M.G. // J. Mater. Sci. 1983. V. 18. P. 1983. https://doi.org/10.1007/BF00554991
  10. Niu J., Sha J., Yang D. // Physica E. 2004.V. 23. P. 131. doi: 10.1016/j.physe.2004.01.013
  11. PourebrahimA., Baharvandi H., Foratirad H.,Ehsani N. // J. Alloys Compd. 2019. V. 789. P. 313. https://doi.org/10.1016/j.jallcom.2019.03.062
  12. Thom A.J., Akinc M. // Report. 1995. doi: 10.2172/106642 fatcat: bllt7korkjft7ey5uddxjpxse4
  13. Atazadeh N., Heydari M.S., Baharvandi H.R., Ehsani N. // Int. J. Refract. Met. Hard Mater. 2016. V. 61.P. 67. http://dx.doi.org/10.1016/j.ijrmhm.2016.08.003
  14. Kasraee K., Yousefpour M.,Tayebifard S.A. // J. Alloys Compd. 2019. V. 779. P. 942. https://doi.org/10.1016/j.jallcom.2018.11.319
  15. Wang L., JiangW., Qin C., Chen L. // J. Mater. Sci. 2006. V. 41. P. 3831. doi: 10.1007/s10853-005-5159-6
  16. Lihua H., Yiying Y., Huawei G. // Wuhan Univ.J. National Sci. 1998. V. 3(4). P. 433. https://doi.org/10.1007/BF02830045
  17. HongJ., Lee S., Lee S., et al. // Nanoscale. 2014.V. 6. P. 7503. https://doi.org/10.1039/C3NR06771H
  18. Chang C., Yee D.S., Petkie R. // Appl. Phys. Letters 1989. V. 54. P. 2545. doi: 10.1063/1.101045
  19. An B.-S., Kwon Y., Oh J.-S., et al. // ACS Appl.Mater. Interfaces 2020. V. 12. P. 3104. doi: 10.1021/acsami.9b15562
  20. Luong T.K.P., Le Thanh V., Ghrib A., et al. // Phys.Scr. 2019. V. 94. P. 085803. https://doi.org/10.1088/1402-4896/ab182b
  21. Govindarajan S., Moore J.J.,Disam J., Suryanarayana C. // Met. Mater. Trans. A. 1999.V. 30. P. 799. https://doi.org/10.1007/s11661-999-1012-x
  22. Kim I.-S., Shim C.-E., Kim S.W., et al. // Adv. Mater. 2023. V. 35. P. 2204912. doi: 10.1002/adma.202204912
  23. Syugaev A.V., Yazovskikh K.A., Lomayeva S.F., et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects.2021. V. 622. P. 126692. https://doi.org/10.1016/j.colsurfa.2021.126692
  24. Eryomina M.A., Lomayeva S.F. // Adv. Powd. Techn. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  25. Bolokang A.S., Motaung D.E., Arendse C.J., Muller T.F.G. // Adv. Powder Technol. 2015. V. 26. P. 169. http://refhub.elsevier.com/S0921-8831(20)30066-2/h0005
  26. Wan Y.,Sun B., Liu W., Qi C. //J. Sol-Gel. Sci. Technol. 2012. V. 61. P. 558. doi: 10.1007/s10971-011-2659-5
  27. Miragliotta J., Benson R.C., Phillips T.E. // MRS Online ProceedingsLibrary (OPL). 1996. V. 445. P. 217. https://doi.org/10.1557/PROC-445-217
  28. Shelekhov E.V.,Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42.P. 309. https://doi.org/10.1007/BF02471306
  29. Eryomina M.A.,Lomayeva S.F., Demakov S.L. // J. Sol. St. Chem. 2020. V. 290. P. 121575. https://doi.org/10.1016/j.jssc.2020.121575
  30. Eremina M.A., Lomaeva S.F., Burnyshev I.N., et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1274. https://doi.org/10.1134/S0036023618100066
  31. Eryomina M.A., Lomayeva S.F.// Adv. Powd. Technol. 2020. V. 31.P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  32. Yan Z.H., Oehring M., Bormann R. // J. Appl. Phys. 1992. V. 72(6). P. 2478. https://doi.org/10.1063/1.351594
  33. Sokolova E.I.,Martirosyan N.A., Nersesyan M.D. // Russ. J. Inorg. Chem. 1981.V. 26(7). P. 1949. http://refhub.elsevier.com/S0921-8831(20)30066-2/h0055
  34. Ngai T.L., Kuang Y., Li Y. // Ceram. Int. 2012. V. 38.P. 463. https://doi.org/10.1016/j.ceramint.2011.07.028
  35. RadhakrishnanR., Bhaduri S.B., Henager C.H. // 1995 International Conference andExhibition on Powder Metallurgy and Particulate Materials At: Seattle, WAVolume: 3, pages 13/129–13/137.
  36. Zueva L.V., Gusev A.I. // Physicsof the Solid State. 1999. V. 41(7). P. 1134. (in Russ.).
  37. Turchanin A.G., Turchanin M.A. Thermodynamics of Refractory Carbides. M.: Metallurgy,1991. 352 p. (in Russ.)
  38. Cao Z., Xie W., Jung I., Du G., Qiao Z. Critical Evaluation and Thermodynamic Optimizationof the Ti-C-O System and its Applications to Carbothermic TiO2Reduction Process // Met. Mater. Transact. B. 2015. V.46. P. 1782. doi: 10.1007/s11663-015-0344-8
  39. Zhilyaev V.A., Patrakov E.I. // Powder Metallurgy and Functional Coatings2014. № 3. P. 49. (in Russ.) https://doi.org/10.17073/1997-308X-2014-3-49-54
  40. Alyamovsky S.I.,Zainulin Yu.G., Shveikin G.P. Oxycarbides and Oxynitrides of Metals IVAand VA Subgroups. M.: Nauka, 1981. 144 p. (in Russ.)
  41. Williams J.J. Structure and High-Temperature Properties of Ti5Si3withInterstitial Additions // Retrospective Theses and Dissertations. 1999. 12494. https://lib.dr.iastate.edu/rtd/12494
  42. Williams J.J., Ye Y.Y., Kramer M.J., et al. // Intermetallics.2000. V. 8. P. 937.
  43. Thom A.J., Young V.G., Akinc M. // J. Alloys Compd. 2000. V. 296.P. 59. https://doi.org/10.1016/S0925-8388(99)00533-2
  44. Xiong Y., WangW., Ye Z., et al. //J. Europ. Ceram. Soc. 2023. V. 43(9). P. 3988. https://doi.org/10.1016/j.jeurceramsoc.2023.03.030

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025