Thermal decomposition of copper oxalate and potassium oxalatocuprate according to in operando XPS data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Thermal decomposition processes in the rangefrom room temperature to 400°C of copper(II) oxalate CuC2O4⋅½H2O and potassium oxalate cuprate(II) K2Cu(C2O4)2⋅2H2O in vacuum at the residual pressure 10–5mm Hg with XPS and Auger spectra recordedin operandoare studied. An X-ray photoelectronspectrometer with a magnetic energy analyzer is used. The analysisof XPS and Auger spectroscopy data shows that thermal decompositionof CuC2O4⋅½H2O involves the stages ofdetachment of crystallization water (150–265°C), CO2(265–285°C)with an unstable intermediate product formed and decomposed at 285°C with the metallic copper residue formed with admixtureof 11–13 mol. % of copper(I) oxide. Thermal decomposition of K2Cu(C2O4)2⋅2H2O involves the stages of elimination of crystallization water (85–120°C) anddecomposition of the obtained anhydrous oxalate with elimination of CO2and CO (250–290°C).

About the authors

N. V. Lomova

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

I. S. Kazantseva

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

M. A. Shumilova

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

N. N. Pastukhova

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

N. Yu. Isupov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

D. S. Rybin

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

F. F. Chausov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Email: chaus@udman.ru
Izhevsk, 426067 Russia

V. V. Boldyrev

V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: chaus@udman.ru
Novosibirsk, 630090 Russia

References

  1. Clarke R.M., Williams I.R. // Mineralogical Magazine. 1986. V.50. P. 295. https://doi.org/10.1180/minmag.1986.050.356.15
  2. Chisholm J.E., Jones G.C., Purvis O.W. // Mineralogical Magazine. 1987. V. 51. P. 715. https://doi.org/10.1180/minmag.1987.051.363.12
  3. Kirschner S., Mclean J.A., Meerman G.Potassium Dioxalatocuprate(II)2-Hydrate. In the Book: Inorganic Syntheses, 2007, 1–2. https://doi.org/10.1002/9780470132371.ch1
  4. Ren W.-X., Li P.-J., Geng Y., Li X.-J. // J. Hazardous Materials. 2009. V. 167. P. 164. https://doi.org/10.1016/j.jhazmat.2008.12.104
  5. Dollimore D. // Thermochimica Acta.1987. V. 117.P. 331. https://doi.org/10.1016/0040-6031(87)88127-3
  6. Salavati-Niasari M., Davar F., Mir N. // Polyhedron. 2008. V. 27. № 17.P. 3514. https://doi.org/10.1016/j.poly.2008.08.02
  7. Liujin L. Method for preparing ultra-fine copper powder: Pat. 104475748 ofChina, 2015.
  8. Lamprecht E., Watkins G.M., Brown M.E. // Thermochim.Acta. 2006. V. 446. P. 91. https://doi.org/10.1016/j.tca.2006.03.008
  9. Mohamed M.A., Galwey A.K. // Thermochimica Acta. 1993. V. 217.P. 263. https://doi.org/10.1016/0040-6031(93)85115-p
  10. DonkovaB., Mehandjiev D. // J.of Materials Science. 2005. V. 40. № 15. P. 3881. https://doi.org/10.1007/s10853-005-0487-0
  11. Dubicki L., Harris C.M., Kokot E., Martin L. // Inorg. Chem. 1966. V. 5. P. 93. https://doi.org/10.1021/ic50035a023
  12. Schmittler H. // Monatsberichte der Deutsche Akad. Wiss. Berlin.1968. V. 10. P. 581.
  13. Fichtner-Schmittler H. // Kristall undTechnik. 1979. V. 14. P. 1079. https://doi.org/10.1002/crat.19790140908
  14. Christensen A.N.,Lebech B., Andersen N.H., Grivel J.-C. // Dalton Trans. 2014.V. 43. P. 16754. https://doi.org/10.1039/c4dt01689k
  15. Udupa M.R. // Thermochimica Acta. 1982. V. 55. № 1. P. 117. https://doi.org/10.1016/0040-6031(82)87013-5
  16. Sarada K., Muraleedharan K. // J. of ThermalAnalysis and Calorimetry. 2015. V. 123. № 1. P. 643. https://doi.org/10.1007/s10973-015-4988-z
  17. Kornyakov I.V., Gurzhiy V.V., Kuz’mina M.A., et al. // Int.J. Mol. Sci. 2023. V. 24. Article Number 6786. https://doi.org/10.3390/ijms24076786
  18. Chenakin S.P., Szukiewicz R., Barbosa R., Kruse N. //J. Elec. Spec. Rel. Phenom. 2016. V. 209. P. 66. https://doi.org/10.1016/j.elspec.2016.04.001
  19. Rückriem K., GrotheerS., Vieker H., et al. // Beilstein J. Nanotech. 2016. V. 7. P. 852. https://doi.org/10.3762/bjnano.7.77
  20. Chenakin S., Kruse N. // Appl.Surf. Sci. 2020. V. 515. Article Number 146041. https://doi.org/10.1016/j.apsusc.2020.146041
  21. Chenakin S.,Kruse N. // J. Phys. Chem.C. 2019. V. 123. № 51. P. 30926. https://doi.org/10.1021/acs.jpcc.9b07879
  22. Viswamitra M.A. // Zeitschrift für Kristallographie. 1962. V. 117.P. 437. https://doi.org/10.1524/zkri.1962.117.5-6.437
  23. Jeter D.Y., Hatfield W.E. // Inorg.Chim. Acta. 1972. V. 6. P. 523. https://doi.org/10.1016/s0020-1693(00)91850-4
  24. Zhang B., Zhang Y., Zhang J., et al. // CrystEngComm.2016. V. 18. № 27. P. 5062. https://doi.org/10.1039/c6ce00786d
  25. Darley J.R., Hoppe J.I. // J. Chem. Educ. 1972. V.49. № 5. P. 365. https://doi.org/10.1021/ed049p365
  26. Jun L., Feng-XingZ., Yan-Wei R., et al. // Thermochim. Acta. 2003. V.406. № 1–2. P. 77. https://doi.org/10.1016/s0040-6031(03)00221-1
  27. Tanaka K. // J. Inorg. and Nuclear Chem. 1981. V. 43. № 11. P. 2999. https://doi.org/10.1016/0022-1902(81)80662-8
  28. Rahimi-Nasrabadi M., Pourmortazavi S.M., Davoudi-DehaghaniA.A., et al. // CrystEngComm. 2013. V. 15. № 20. P. 4077. https://doi.org/10.1039/c3ce26930b
  29. Edwards H.G.M., Farwell D.W., Rose S.J., Smith D.N. // J. Mol. Struc. 1991.V. 249. № 2–4. P. 233. https://doi.org/10.1016/0022-2860(91)85070-j
  30. Trapeznikov V.A.,Shabanova I.N., Kholzakov A.V., Ponomaryov A.G. // J. Elec.Spec. Rel. Phenom. 2004. V. 137–140. P. 383. https://doi.org/10.1016/j.elspec.2004.02.115
  31. Wojdyr M. // J. Appl. Cryst. 2010. V. 43. № 5. P. 1126. https://doi.org/10.1107/S0021889810030499
  32. Biesinger M.C. // Surf.Interf. Anal. 2017. V. 49. № 13. P. 1325. https://doi.org/10.1002/sia.6239
  33. Ganguly A., Sharma S., Papakonstantinou P., Hamilton J. // J. Phys. Chem. C. 2011. V. 115. № 34.P. 17009. https://doi.org/10.1021/jp203741y
  34. Edwards D. // Inorg. Chim.Acta. 1976. V. 18. P. 65. https://doi.org/10.1016/s0020-1693(00)95586-5
  35. Rudd J.A.,Jones D.R., Dunnill C.W., Andreoli E. // Surf. Sci. Spec.2019. V. 26. № 1. Article Number 014013. https://doi.org/10.1116/1.5091615

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences