Комплексообразование L-гистидина с изомерами пиридинкарбоновой кислоты в водном буферном растворе при 298.15 К: калориметрическое изучение
- Авторы: Тюнина Е.Ю.1, Межевой И.Н.1
-
Учреждения:
- Институт химии растворов им. Г. А. Крестова, РАН
- Выпуск: Том 99, № 1 (2025)
- Страницы: 89-96
- Раздел: ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ
- Статья получена: 01.06.2025
- Статья опубликована: 17.04.2025
- URL: https://kazanmedjournal.ru/0044-4537/article/view/681871
- DOI: https://doi.org/10.31857/S0044453725010081
- EDN: https://elibrary.ru/EIKIBI
- ID: 681871
Цитировать
Аннотация
Методом калориметрии растворения исследованы особенности взаимодействия гетероциклической аминокислоты L-гистидина (His) со структурными изомерами пиридинкарбоновой кислоты: пиколиновой (PA), никотиновой (NA) и изоникотиновой (INA) кислотами в фосфатном буфере, рН 7.4 при Т = 298.15 К. Определены термодинамические параметры: константы связывания, энтальпии комплексообразования, энергии Гиббса и энтропии. Установлено, что для His и пиридинмонокарбоновых кислот образование водородных связей и электростатические взаимодействия являются основной силой, определяющей образование комплексов между ними в буферном растворе, о чем свидетельствуют большие отрицательные значения энтальпии, а также положительные значения энтропии. Стабильность полученных комплексов зависит от структурной изомерии пиридинкарбоновой кислоты и повышается в ряду: PA < NA < INA. Показано, что основной вклад в стабилизацию образуемых комплексов вносит энтальпийная составляющая свободной энергии Гиббса комплексообразования.
Полный текст

Об авторах
Е. Ю. Тюнина
Институт химии растворов им. Г. А. Крестова, РАН
Автор, ответственный за переписку.
Email: tey@isc-ras.ru
Россия, Иваново, 153045
И. Н. Межевой
Институт химии растворов им. Г. А. Крестова, РАН
Email: tey@isc-ras.ru
Россия, Иваново, 153045
Список литературы
- Zhang J., Zhu C., Ma Y. // J. Chem. Thermodynamics. 2017. V. 111. P. 52. http://dx.doi.org/10.1016/j.jct.2017.02.024
- Chauhan S., Singh K., Kumar K. et al. // J. Chem. Eng. Data. 2016. V. 61. P. 788. https://doi.org/10.1021/acs.jced.5b00549
- Sawhney N., Kumar M., Sharma A.K. et al. // J. Chem. Thermodynamics. 2017. V. 115. P. 156. https://doi.org/10.1016/j.jct.2017.07.040
- Tavallali H., Espergham O., Deilamy-Rad G. et al. // Anal. Biochem. 2020. V. 604. P. 113811. https://doi.org/10.1016/j.ab.2020.113811
- Li Sh., Hong M. // J. Am. Chem. Soc. 2011. V. 133. P. 1534. https://dx.doi.org/10.1021/ja108943n
- Gille A., Bodor E.T., Ahmed K. et al. // Annu. Rev. Pharmacol. Toxicol. 2008. V. 48. P. 79. https://doi.org/10.1146/annurev.pharmtox.48.113006.094746
- Zhang Y. // Annu. Rev. Pharmacol. Toxicol. 2005. V. 45. P. 529. https://doi.org/10.1146/annurev.pharmtox.45.120403.100120
- El-Dean A.M.K., Abd-Ella A.A., Hassanien R. et al. // ACS Omega. 2019. V. 4. P. 8406. https://doi.org/10.1021/acsomega.9b00932
- Marinković A.D., Drmanić S.Ž., Jovanović B.Ž. et al. // J. Serb. Chem. Soc. 2005. V. 70. P. 557.
- Gamov G.A., Kiselev A.N., Alexsandriiskii V.V. et al. // J. Mol. Liq. 2017. V. 242. P. 1148. http://dx.doi.org/10.1016/j.molliq.2017.07.106
- Al-Saif F.A., Al-Humaidi J.Y., Binjawhar D.N. et al. // J. Mol. Struct. 2020. V. 1218. P. 128547. https://doi.org/10.1016/j.molstruc.2020.128547
- Lugo M.L., Lubes V.R. // J. Chem. Eng. Data. 2007. V. 52. P. 1217. https://doi.org/10.1021/je6005295
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. // Thermochimica Acta. 2020. V. 690. P. 178704. https://doi.org/10.1016/j.tca.2020.178704
- Tyunina E.Yu., Krutova O.N., Lytkin A.I. et al. // J. Chem. Thermodynamics. 2022. V. 171. P. 106809. https://doi.org/10.1016/j.jct.2022.106809
- Tyunina E.Yu., Mezhevoi I.N. // Ibid. 2023. V. 180. P. 107020. https://doi.org/10.1016/j.jct.2023.107020
- Чернова Р.К., Варыгина О.В., Березкина Н.С. // Изв. Саратовского ун-та. Нов. Сер. Сер. Химия. Биология. Экология. 2015. Т. 15. № 4. С. 15. https://doi.org/10.18500/1816-9775-2015-15-4-15-21
- Лыткин А.И., Баделин В.Г., Крутова О.Н. и др. // Журн. общей химии. 2019. Т. 89. № 11. С. 1719. [Lytkin A.I., Badelin V.G., Krutova O.N. et al. // Russ. J. Gen. Chem. 2019. V. 89. P. 2235. https://doi.org/10.1134/S1070363219110124].
- Баделин В.Г., Тюнина Е.Ю., Межевой И.Н. // Журн. прикл. химии. 2007. Т. 80. № 5. С. 732. [Badelin V.G., Tyunina E.Yu., Mezhevoi I.N. // Russ. J. Appl. Chem. 2007. V. 80. P. 711.] https://doi.org/10.1134/S1070427207050047
- Tyunina E.Yu., Mezhevoi I.N., Dunaeva V.V. // J. Chem. Thermodynamics. 2020. V. 150. P. 106206. https://doi.org/10.1016/j.jct.2020.106206
- Smirnov V.I., Badelin V.G. // Thermochim. Acta. 2015. V. 606. P. 41. http://dx.doi.org/10.1016/j.tca.2015.03.007
- Wadsö I., Goldberg R.N. // Pure Appl. Chem. 2001. V. 73. P. 1625.
- Parker V.B. Thermal properties of univalent electrolytes, vol. 2, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand., US Gov., Washington, DC2, 1965, pp. 66.
- Archer D.G. // Phys. Chem. Ref. Data. 1999. V. 28. P. 1. https://doi.org/10.1063/1.556034
- Баделин В.Г., Смирнов В.И., Межевой И.Н. // Журн. физ. химии. 2002. Т. 76. № 7. С. 1299.
- Tyunina E.Yu., Badelin V.G., Mezhevoi I.N. // J. Mol. Liq. 2019. V. 278. P. 505. https://doi.org/10.1016/j.molliq.2019.01.092
- Palecz B. // J. Therm. Anal. Calorim. 1998. V. 54. P. 257.
- Palecz B. // J. Am. Chem. Soc. 2005. V. 127. P. 17768.
- Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1982. Т. 27. № 9. С. 2169. [Borodin V.A., Kozlovsky E.V., Vasil’ev V.P. // Russ. J. Inorg. Chem. 1982. V. 27. P. 2169–2172].
- Chemistry and biochemistry of the amino acids. / Ed. By G.C. Barret, Chapman and Hall, London-N.Y.; 1985.
- Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247.
- Васильев В.П., Кочергина Л.А., Гаравин В.Ю. // Журн. общ. химии. 1985. Т. 55. С. 2780. [Vasil’ev V.P., Kochergina L.A., Garavin V.Yu. // Russ. J. Gen. Chem. 1985. V. 55. P. 2780.]
- Nagal H., Kuwabara K., Carta G. // J. Chem. Eng. Data. 2008. V. 53. P. 619. https://doi.org/10.1021/je700067a
- Ashton L.A., Bullock J. // J. Chem. Soc. Faraday Trans. Part 1. 1982. V. 78. P. 1177.
- Ross P.D., Subramanian S. // Biochemistry. 1981. V. 20. P. 3096. https://doi.org/10.1021/bi00514a017
- Castronuovo G., Niccoli M., Varriale L. // Tetrahedron. 2007. V. 63. P. 7047. https://doi.org/10.1016/j.tet.2007.05.014
- Куранова Н.Н. Комплексообразование и кислотно-основные равновесия в водно-органических растворах Cu2+, Fe3+ и никотиновой кислоты: Автореф. дис. … канд. хим. наук. Иваново: ИГХТУ, 2019. 16 с.
- Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. физ. химии. 2020. Т. 94. С. 1904. [Lytkin A.I., Chernikov V.V., Krutova O.N., Krutova E.D. // Russ. J. Phys. Chem. A. 2020. V. 94. P. 2569. https://doi.org/10.1134/S003602442012016X]
- Лыткин А.И., Черников В.В., Крутова О.Н. и др. // Журн. физ. химии. 2020. Т. 94. № 2. С. 1002. [Lytkin A.I., Chernikov V.V., Krutova O.N., Krutova E.D. // Ibid. A. 2020. V. 94. P. 1342. https://doi.org/10.1134/S0036024420070213]
- Sabbah R., Ider S. // Can. J. Chem. 1999. V. 77. P. 249. https://doi.org/10.1139/cjc-77-2-249
- Koczoń P., Dobrowolski J.Cz., Lewandowski W. // J. Molec. Struct. 2003. V. 655. P. 89. https://doi.org/10.1016/S0022-2860(03)00247-3
- Haj-Zaroubi M., Schmidtchen F.P. // Chem. Phys. Chem. 2005. V. 6. P. 1181. https://doi.org/10.1002/cphc.200400559
Дополнительные файлы
